Multi-Lines Hybrid Riser
Cost-Effective System for Deep Waters

Gilles COUSIN
SEAL Engineering
Multi-Lines Hybrid Riser System

- Agenda
 - Challenges & Design Premise
 - Main Components
 - Outline Installation Procedure
 - Dynamic Behavior
 - New URA Design Development
Multi-Lines Hybrid Riser System

- **Challenges of (Ultra) Deep Water Design**
 - Prospects at 3,000m WD or more
 - Deepwater (pressure) conditions
 - Seabed Conditions & Riser-Soil interaction
 - Qualification of Components
 - Fatigue
 - Etc.
 - Development cost effectiveness
Multi-Lines Hybrid Riser System

- **Design Premise**
 - One riser bundle per reservoir (“mini” riser tower):
 - Production (pipe-in-pipe riser, as stem tendon)
 - Gas Lift (PiP annular, injection @ riser base)
 - Service Line (e.g. ‘loop’ with production line)
 - Water Injection
 - Fully assembled offshore
Multi-Lines Hybrid Riser System

- **Main Components**
 - ‘Open’ Frame Upper Riser Assembly (URA)
Multi-Lines Hybrid Riser System

- **Main Components**
 - Lower Riser Assembly (LRA)
 - Rigid ‘M’ Spools
 - Flexible Jumpers or “Flex-tails”
Multi-Lines Hybrid Riser System

- Outline Installation Procedure
 - Foundation Installation
 - Production PIP Riser deployment
 - URA Connection & transfer to hang-off platform
 - Lateral Riser Deployment
 - Lateral Riser Assembly to FSR x 2
Multi-Lines Hybrid Riser System

- **Outline Installation Procedure**
 - Foundation Installation
 - Production PIP Riser deployment
 - URA Connection & transfer to hang-off platform
 - Lateral Riser Deployment
 - Lateral Riser Assembly to FSR
 - Buoyancy Tank Connection (crane master)
 - FSR Lowering & Connection to Foundation
 - Buoyancy Tank N2 Filling

\[x \ 2 \]
Multi-Lines Hybrid Riser System

- **Outline Installation Procedure**
 - Foundation Installation
 - Production PIP Riser deployment
 - URA Connection & transfer to hang-off platform
 - Lateral Riser Deployment
 - Lateral Riser Assembly to FSR
 - Buoyancy Tank Connection (crane master)
 - FSR Lowering & Connection to Foundation
 - Buoyancy Tank N2 Filling
 - RBJs Installation
 - Flexible Jumpers Installation
 - ML-FSR Pre-Commissioning
Multi-Lines Hybrid Riser System

- **Hydrodynamic Behavior checked, including**
 - Different Riser Configurations (spacing, diameters...)
 - Vortex Induced (including Wake) Dynamics

- Steady (e.g. Galloping) Instability Phenomena
Multi-Lines Hybrid Riser System

- **New URA Design Development**
 - Two-tiered design arranged around a central open pipe structural member
Multi-Lines Hybrid Riser System

- **New URA Design Development**
 - Two-tiered design arranged around a central open pipe structural member
 - Direct Load Transfer from Buoyancy Tank to Central Riser
Multi-Lines Hybrid Riser System

- New URA Design Development
 - Two-tiered design arranged around a central open pipe structural member
 - Direct Load Transfer from Buoyancy Tank to Central Riser
 - Compact design / load reductions

Previous URA Design

1300mm
Multi-Lines Hybrid Riser System

- **New URA Design Development**
 - Two-tiered design arranged around a central open pipe structural member
 - Direct Load Transfer from Buoyancy Tank to Central Riser
 - Compact design / load reductions
 - New Load Decoupling System
 - Lower cost ‘clamp’ connector
 - Installation effectiveness
 - Cost Reduction
Multi-Lines Hybrid Riser System

- Cost comparison with HRT and array of FSHR, Case study: 3 reservoirs @ 1,700m water depth;

- Multi Line Free Standing Riser (3 off) cost estimate:
 - ~17% lower than FSHR array (9 off);
 - ~12% lower than HRT (3 off).
Thank You / Questions

Gilles COUSIN
SEAL Engineering
GCO@sealengineering.net