

The Increasing Challenges of Obsolescence Management to the Subsea Oil and Gas Industry

David Saul

BP Global Subsea Hardware, Reliability and Technology Lead

March 2015

Introduction

- The increasing challenges of obsolescence management:
 - What do we mean by the term 'obsolescence management'.
 - Causes of obsolescence.
 - Challenges of both aging population & new developments.
 - Generic processes.
 - How has BP's approach changed / developed over the last 10 years.
 - Future challenges.
 - Areas to consider when determining obsolescence management programmes.

Obsolescence, noun, going out of use or fashion, becoming obsolete q.v.

Obsolete, adjective, not used any more (from the Latin obsoletus = worn out)

Ref [1]

What do We Mean by Obsolescence Management?

- Definitions [from IEC 62402]
 - **Obsolescence** is 'the transition from availability from the original manufacturer to unavailability'.
 - **Obsolescence Management** is 'the co-ordinated activities to direct and control an organisation with regard to obsolescence'.
- **Objective of Obsolescence Management –** ensure that obsolescence is managed as an integral part of design, development, production and in-service support in order to minimise the financial and availability impact throughout the product life cycle.

Obsolescence is inevitable and it cannot be avoided, but forethought and careful planning can minimize its impact and its potential high costs – IEC 62402

Obsolescence, Cause and Scope

- We consider a product to be obsolete if the supplier is either unable or unwilling to supply it going forward.
- It affects all types of products and the equipment needed to support them, and can occur any stage of the product cycle.
- Obsolescence:
 - Is a major cost driver for the support of long lifespan systems.
 - Creates vulnerabilities affecting operational availability, maintainability, and supportability.
- Sustainment-dominated systems systems where the cost of maintaining the equipment will exceed the purchase cost.

Ref [2]

© BP Plc 2015

Existing Systems

- Procured and designed with limited focus on obsolescence:
 - No assurance that original suppliers had obsolescence processes in place.
 - Likely to contain bespoke design elements and rely on 'out of support' software.
- Desire to extend operating beyond originally specified design life, without impacting safety.
- Problems with accessing the original designs:
 - Engineers with in depth knowledge have left the industry.
 - Detailed design documents lost or not accessible.
 - Field Operatorship could have changed.
- Test and inspection standards / procedures out of date.

The New Development Challenge

- Consider product life cycles as a series of connected gears:
 - In the time it takes to get from concept to delivery for a large mechanical structure, some electronic subsystems components could have gone through 5 generations.
 - How do you manage your contractual liabilities with this sort of disconnect between differing system parts ?

Obsolescence Management Techniques

10 Years Ago

- No acceptance that obsolescence could be a widespread problem.
 - Comparisons made with the 'Millennium' Bug.
 - Uncontrolled transition to 'Component Off The Shelf' (COTS) parts.
 - Obsolescence not addressed as part of contracting or engineering processes.
 - Suppliers overly prepared to maintain support for discontinued control systems.
 - Minimal industry agreement on open interface standards for subsea electronics.
- Obsolescence focus was limited to subsea electronic packages.
 - Motorola withdrawing from supply of military specification parts.
 - Single sourced power supply sub-system withdrawn by the supplier.
- Implications of new regulations (RoHS, OSPAR) not recognised. Ref [6&7]

Where Are We Today

- New systems:
 - Obsolescence processes for subsea now in place, focused on proactive mitigation.
 - Results of **Operator led JIP captured in BP processes**.
 - Supplier obsolescence management processes checked as part of vendor audits and reliability assurance work during design.
 - Application of industry standards to a reduce the number of bespoke systems.
- Existing systems:
 - Expectation that most subsea systems commissioned in the 1999's will continue to operate until 2030+.
 - Multiple examples of obsolescence related issues, not just with electronics.
 - Suppliers more **realistic** in relation to **maintaining legacy systems**.

NLGP – Northern Leg Gas Pipeline

- NLGP is a **simple pipeline control system**.
 - Early subsea electronics control system.
 - Installed between 1982 and 1985.
 - Operating well beyond original design life.
- Supplier **unable to repair.**
 - Parts not available.
 - No one with detailed NLGP design knowledge is still working.
- A complete system replacement is not economic.
- **Power limitations** preclude retro fitting suppliers current controls electronics.
 - A bespoke solution is being looked at.

Future Challenges?

- Cost.
- **Technology** is getting ever more **complex**.
 - Hardware / software development platforms.

- More aging assets (and people).
- Counterfeiting.
- Test equipment.
- Accessing documents.

Areas to Consider

- A **formal process** */* **plan** is important to create structure even if high level.
- Avoid **short term temptations** to save money on obsolescence **think holistically**.
- Long term document storage
- Consider test and development equipment equipment needs to be powered up regularly or it could become unsafe.
- People succession planning around design knowledge does not work in practice.
- Be proactive don't wait for your obsolescence
 vulnerability to become a production impact.

- 1. The Obsolescence Minefield A guide for senior executives Component Obsolescence Group 2007.
- 2. Management of component obsolescence in the military electronic support environment Meyer, 2002.
- 3. Obsolescence management, Application guide, BS IEC 64202:2007.
- 4. Are you managing your obsolescence risks ?, Saul, MCE, 2006.
- 5. Obsolescence Management for Long-life Contracts: Francisco, Rajkumar and Essam, 2009.
- 6. RoHS Restriction of the Use of Certain Hazardous Substances, https://www.gov.uk/rohs-compliance-and-guidance
- 7. OSPAR works to identify threats to the marine environment, name comes from the original Oslo and Paris Convention from which the group was formed, <u>http://www.ospar.org</u>

Industry Organisations

• Component Obsolescence Group, <u>admin@cog.org.uk</u> Tel:+44 (0) 1727 876 029