Structural and Fatigue Performance of HPHT Subsea Drilling and Production Systems

Dr. Jim Kaculi, P.E.
Vice President – Engineering
Outline

• HPHT Systems Requirements and Challenges

• Wellhead System Overview
 • Structural Integrity
 - System Verification Analysis
 - System Validation Testing – New Horizontal Test Machine
 • Fatigue Performance

• New HPHT Wellhead System Design Concept

• Advanced Product Quality Planning (APQP)

• Conclusions
HPHT Subsea Systems

• Requirements
 ➢ Pressure > 15 KSI and/or Temperature > 350°F
 ➢ Higher Structural Load Capacity Requirements
 ➢ Longer Fatigue Life Requirements
 ➢ Need for Next Generation HPHT Equipment

• Challenges
 ➢ Uncertainties with Environmental Effects on Material Properties
 ➢ Lack of HPHT Material Properties at Different Environments
 ➢ More Stringent Regulatory Requirements for Analysis and Testing
 ➢ New Tools and Technology Needed
Subsea Wellhead Systems Overview

The Wellhead is the topmost component of a well, suitable for the life of the well, non-retrievable, and provides:

- External Load Resistance
- Pressure Containment
- Pressure Controlling Interfaces
- Hanging Interface & Weight Support
- Fatigue/Cyclic Load Resistance
- Barrier to Environment
Verification Analysis

- Traditional (Hand Calculations, Equivalent Tension, 2D FEA)
- Advanced (3D FEA)

Limitations
- Equivalent Radius
- Compression Side of Bending
- Combined Load Effects
- Non- Axisymmetric Features (dog segments, etc.)
- Two capacity points determined with hand calculation cover all combined loads.
3D FEA Capacity Chart

INTERNAL PRESSURE VS. BENDING WITH TENSION/COMPRESSION AND PRESSURE END LOAD

- Tension
- Compression
- Rated
- Extreme
- Survival

- W/O PEL
- W/ PEL
Wellhead System Global Analysis

- **Loading Conditions**
 - Mechanical Preload
 - External Loads
 - Pressure
 - Pressure End Load (i.e. shear rams closed)
 - Casing Program & Weights
 - Thermal Loads
 - Cyclic Loads

- **3D FEA Model**
 - 200 ft Below Mudline
 - Non-linear Geometry Behavior
 - Over 1 Million Elements
 - No Tied Constraints
 - Modeled with Cement
 - Soil Properties
 - Installation sequence closely mimics field conditions

- **Static and Fatigue Evaluation**
Fatigue Evaluation

SN Method

Fracture Mechanics

Change in Loc. Peak Stress
Change in Ref. Average Stress

\[SAF = \frac{\text{Change in Loc. Peak Stress}}{\text{Change in Ref. Average Stress}} \]

\[D_{Total} = \sum_{Bin=1}^{Bin_{max}} \text{Damage}_{Bin} \]

\[T_{Total} = \frac{1}{D_{Total}} \]
Standardized Analysis Inputs

• Analysis Inputs Required for Each Specific Application
 ➢ Water Depths
 ➢ Vessel Types
 ➢ Environments
 ➢ System Configurations
 ➢ Soils
 ➢ Cements
 ➢ Static and Dynamic Loads
 ➢ Environmental Effects on Material Properties
 ➢ Etc.

• Industry Standardized Inputs
 ➢ Standard set of input data that can be used to qualify the equipment to a certain performance level is needed. This data should be categorized for various regions of the world, different water depths, vessel types, etc., and should encompass a range of various load levels from benign to intermediate/extreme and survival conditions.
API PER15K System Analysis & Testing

Wellhead System

- Assembly:
 - Wellhead Connector
 - Low Pressure Housing
 - High Pressure Housing

- Process:
 - Preloaded System
 - 6MM lbf. Casing Weight
 - Apply Loads per Capacity Chart
 - Results Comparison
 - Inspection
 - Third Party Witness

Horizontal Test Machine Load Capacity

- 20×10^6 ft•lbf (27.7 \times 10^6 N•m) Bending
- 13×10^6 lbf (57.8 \times 10^6 N) Tension/Compression
- 6×10^6 lbf (26.7 \times 10^6 N) Simulated Casing Loads
- Combined Loads
20Ksi & 15Ksi Connector Comparison

15 Ksi Connector

~2 × Capacity

20 Ksi Connector

Internal Pressure (ksi)

Bending Moment (ft-lbf)

Pressure End Load (kips)
Conclusions & Recommendations

• A wellhead system verification analysis and validation test has been successfully completed and provided better understanding of the wellhead system performance.

• System validation testing provided critical information needed to make proper adjustments to the verification analysis methodology.

• Knowledge obtained from this test program has been applied for HPHT development work of 20 Ksi subsea systems.

• A new 35” wellhead system/connector design concept is presented with superior structural capacity and fatigue resistance characteristics expected to meet the HPHT industry needs for the future decades.

• There is a need for industry standardized analysis inputs and material properties. Recommendations for data format is presented.
Thank You!

Questions?
Dr. Jim Kaculi, P.E.
Dril-Quip Inc.
6401 N. Eldridge Pkwy, Houston TX 77041
Tel. +1-713-939-7711
E-mail: Jim_Kaculi@Dril-Quip.com