BONGA SOUTHWEST / APARO FIELD
DEVELOPMENT PROJECT
LESSONS LEARNED FROM FPSO FEED

MCE Deepwater
Development 2015

24 – 26 March

LONDON

Charles Essien
BSWA FPSO Delivery Manager
DEFINITIONS & CAUTIONARY NOTE

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: Our use of the term ‘resources plays’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There is a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2014 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 24 - 26 March 2015. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
OML 118 BLOCK OVERVIEW

BONGA SOUTHWEST / APARO (BSWA):

- BSWA field is located in the Gulf of Guinea offshore Nigeria
- Field location is about 130km offshore in water depths of 1160m – 1340m
- The field straddles OML 118, 132, 140 block boundaries
- Host facilities will be located in OML118
- Existing infrastructure at Bonga Main is some 19km Northeast of BSWA, but offers limited synergy.
PROJECT OVERVIEW AND CONTEXT

- Major deep-water oil development, 130km offshore Nigeria, in 1,160 – 1,340m of water

- Project objective
 - Produce about 800 million bbls, developed in two phases (Phase 1 + 2) over 25 yrs

- Project scope as per the FDP & BFD
 - Subsurface & Wells
 - Phase 1: 24 wells (12 producers/12 water injectors) pre-FOD
 - Phase 2: Additional 20 wells (10 producers/10 injectors) post-FOD

 - Subsea & Host Facilities
 - Shell Operated Regional FPSO
 - 5 Prod & 8 Water Injection Drill Centres

- Challenging Nigerian content aspirations
 - FEED and detailed engineering to be performed in-country
 - 50% Topsides modules (by weight) to be fabricated in-country
 - FPSO integration to be performed in-country

PROJECT MATURATION PHASE

KEY PROJECT DRIVERS

- Strong host government and partners support for project
- Maximise operational asset value throughout its life cycle (Optimise CAPEX & OPEX)
- Maximise Ultimate Recovery

TOP PROJECT CHALLENGES

- Achieving an aggressive tendering cycle
- Resolution of non-technical risks
- Quality and timeliness of FEED delivery
- Project team resourcing and continuity
- Nigerian Content requirements
TRANSITION FROM SELECT TO DEFINE PHASE

IDENTIFY

ASSESS

SELECT

DEFINE

EXECUTE

OPERATE

DIVERGENT THINKING

CONVERGENT THINKING

PROJECT PREMISES

TECHNICAL SCOPE

Pre-FEED
2012

FEED
2013

Pre-FEED
2012

FEED
2013

Pre-FEED
2012

FEED
2013

Copyright of Shell Nigeria Exploration and Production

March 2015
TRANSITION TO FEED

- Basis of Design Freeze
 - Fluid data and flow assurance strategy
 - Wells, Operations, Subsea, Pipelines and Risers, and FPSO requirements
 - Metocean, geophysical and geotechnical data

- Management of Change Process
 - Documented process for managing design changes from the Basis of Design

- Feed Deliverables and Technical Assurance
 - Level of definition of FEED deliverables across all technical disciplines
 - List of technical deliverables and required assurance process – aligned with Shell Discipline Controls and Assurance Framework (DCAF) process
 - Definition of Codes and Standards – Shell Design Engineering Practice (DEPs), international codes and standards

- Feed Organization
 - Discipline Delivery Plan and estimate of engineering manhours
 - Team alignment and FEED progress reporting system
Supports Topsides processing facilities, subsea facilities control, oil storage and export

Regional FPSO – simultaneously produce BSWA crude (225 kbpd) and additionally import/handle up to 100 kbpd of processed crude from third party producer

Associated gas export to the OGGS via a 16 inch gas export pipeline to EA shallow water Riser Platform
FEED completed during 2012 – 2013, and underpinned by Shell internal processes, lessons learned, operations & maintenance requirements, and process safety
HULL MAIN CHARACTERISTICS

- The world’s largest FPSO Hull yet at 334m x 65m x 37m (L x B x D)
- Hull Displacement at Maximum Design Draught – 560,284 mT
- Spread moored in 4 x 3 mooring pattern in c. 1,300m water
- 2.5 mln bbl carrying capacity in 18 cargo tanks (6 rows of 3 tanks each)
- 25 years design life based on continuous operations without dry-docking; Fatigue Design Life 40 years
- Cofferdams and production chemical tanks integrated in Hull
- Offloading rate of 1.0 mln bbl/day via SPM Buoy
- POB in normal operation is 160. Maximum POB is 240 during peak requirement (80 single bed cabins + 80 double bed cabins)
- Supports Topsides NTE weight of 45,000 mT
TOPSIDE SYSTEM DESIGN

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DESIGN CAPACITIES</th>
<th>MAJOR EQUIPMENT/TECHNOLOGIES</th>
</tr>
</thead>
</table>
| Oil Production | 225 Kbd | ■ 2 x 50% train; three Separation stages; pre-heating
■ 3 Phase Test Separator
■ Dehydration Equipment: Bulk Oil Treater |
| Gross Liquid Handling | 300 Kbd | Gross design capacity set incorporating Lessons from Bonga Main. |
| Produced Water Treatment | 200 Kbd | ■ Primary and Secondary Hydrocyclones
■ Compact Floatation Units |
| Gas Processing | 270 MMscf/pd | ■ Three stage LP compression (VRU) – Centrifugal compressors
■ 2 x 66% Field Gas Compressor Trains – GT Driven
■ Glycol Contactor/Regeneration system between Stages 2 and 3 of FGC. |
| Water Injection | 400 Kbd | ■ Seawater strainers and Ultra filtration package
■ Deaeration Tower
■ 3 x 33% High Energy Injection pumps – GT Driven |
| Power Generation | 29.5 MW – 45 MW for four operating cases | ■ 4 units in N + 1 configuration
■ Dual Fuel Gas Turbines reference equipment – 23MW ISO
■ Diesel Driven Emergency and Essential Services Generators |
| Process Heating | Available | ■ Waste Heat Recovery installed on gas turbine exhaust system. |
| Process Cooling | Available | ■ Fin Fan coolers
■ Water cooling for lube oil systems and generator motor |
| Chemical Injection | Available | ■ 23 production and water flood chemicals required |
| Crude oil export system | 7500 m3/h | ■ 3 x 50% export pumps, delivering 1.0 million bbl parcel in 24hrs.
■ 3 x 18.7 inch mid depth export risers (unbonded flexible) to SPM |
BSWA FPSO PDMS VIEW

- Layout design facilitated by Tech HSE SME
- Mechanical handling philosophy
- Lessons learned (Bonga Main, CoVs)
- Dropped object assessment
- Human factor engineering

- Major equipment, structures and up to 6-inch piping modelled.
- FEED verification by EPC Tenderers introduced as part of technical tender.
TECHNICAL ASSURANCE ACTIVITIES - 2012/2013

- Value improvement
 - Detailed process engineering review
- Process Engineering Peer Review
 - Review of process engineering design
- Energy Efficiency Review
 - Process engineering design/flow schemes
 - Drivers selection and electrical loads
 - Greenhouse gas and energy efficiency
- Topsides Structures
 - Structural Efficiency review
 - Design Peer Review
- Mechanical Engineering
 - Design Peer Review
 - PDMS reviews
- Materials and Corrosion
 - Design Peer Review

- Rotating equipment
 - Design Peer Review
- Process Automation Control & Optimisation
 - Design Peer Review
- Electrical Engineering
 - Design Peer Review
 - SAFOP Review
- Technical HSSE
 - Topsides Layout Review
 - HFE
 - Coarse HAZOP
 - FEED HAZOP
- FPSO Integrated Design Review
 - Topsides & Hull
 - Tech HSSE
 - Interfaces

- Close collaboration and engagement with Shell Affiliate technical teams and external consultants:
 - Shell Global Solution, NL
 - Deep-water Projects, US
 - Shell Shipping Technology
 - Babcock Engineering, UK
 - Lloyd's Register
FEED PERFORMANCE MANAGEMENT - SAMPLE

Weekly reports
- Monthly reports
- Partner bi-monthly reviews
- Engineering hours
- Deliverables status

Reporting Period - Aug 2013

<table>
<thead>
<tr>
<th>Disciplines</th>
<th>Plan (%)</th>
<th>Actual (%)</th>
<th>% Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static - I</td>
<td>6.0</td>
<td>5.9</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Static - C</td>
<td>75.8</td>
<td>75.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Paco - I</td>
<td>1.2</td>
<td>8.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Paco - C</td>
<td>95.4</td>
<td>83.7</td>
<td>(11.1)</td>
</tr>
<tr>
<td>Process - I</td>
<td>0.0</td>
<td>4.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Process - C</td>
<td>99.8</td>
<td>92.2</td>
<td>(7.6)</td>
</tr>
<tr>
<td>Rotating - I</td>
<td>1.2</td>
<td>0.0</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Rotating - C</td>
<td>90.7</td>
<td>80.4</td>
<td>(10.3)</td>
</tr>
<tr>
<td>Electrical - I</td>
<td>0.9</td>
<td>0.5</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Electrical - C</td>
<td>77.8</td>
<td>77.4</td>
<td>(0.3)</td>
</tr>
<tr>
<td>MISC - I</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>MISC - C</td>
<td>85.3</td>
<td>80.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Structural - I</td>
<td>0.0</td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Structural - C</td>
<td>85.6</td>
<td>84.0</td>
<td>(1.0)</td>
</tr>
<tr>
<td>TIS Overall - I</td>
<td>2.9</td>
<td>4.4</td>
<td>4.9</td>
</tr>
<tr>
<td>TIS Overall - C</td>
<td>87.3</td>
<td>83.4</td>
<td>(3.9)</td>
</tr>
</tbody>
</table>

Discipline - I - Monthly Progress (Incremental)

Discipline - C - Progress To Date (Cumulative)

FEED PERFORMANCE MANAGEMENT - SAMPLE

Reporting Period - Aug 2013

<table>
<thead>
<tr>
<th>Disciplines</th>
<th>Plan (%)</th>
<th>Actual (%)</th>
<th>% Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static - I</td>
<td>6.0</td>
<td>5.9</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Static - C</td>
<td>75.8</td>
<td>75.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Paco - I</td>
<td>1.2</td>
<td>8.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Paco - C</td>
<td>95.4</td>
<td>83.7</td>
<td>(11.1)</td>
</tr>
<tr>
<td>Process - I</td>
<td>0.0</td>
<td>4.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Process - C</td>
<td>99.8</td>
<td>92.2</td>
<td>(7.6)</td>
</tr>
<tr>
<td>Rotating - I</td>
<td>1.2</td>
<td>0.0</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Rotating - C</td>
<td>90.7</td>
<td>80.4</td>
<td>(10.3)</td>
</tr>
<tr>
<td>Electrical - I</td>
<td>0.9</td>
<td>0.5</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Electrical - C</td>
<td>77.8</td>
<td>77.4</td>
<td>(0.3)</td>
</tr>
<tr>
<td>MISC - I</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>MISC - C</td>
<td>85.3</td>
<td>80.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Structural - I</td>
<td>0.0</td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Structural - C</td>
<td>85.6</td>
<td>84.0</td>
<td>(1.0)</td>
</tr>
<tr>
<td>TIS Overall - I</td>
<td>2.9</td>
<td>4.4</td>
<td>4.9</td>
</tr>
<tr>
<td>TIS Overall - C</td>
<td>87.3</td>
<td>83.4</td>
<td>(3.9)</td>
</tr>
</tbody>
</table>
FPSO ITT - SCOPE OF WORK OVERVIEW

- FPSO Main EPC responsible for delivery of the FPSO Unit (Hull + Topsides), including related sub systems

- Following subcontractors selected by FPSO EPC from SNEPCo AVL:
 - Main Automation Contract
 - Main Telecoms Contractor
 - Main Information Contractor

- SNEPCo procures 4 x Turbo generator units + 2 x Turbo compressor units for free issue to FPSO EPC.

- Class Society selected by SNEPCo

- FPSO EPC responsible for managing interfaces with other EPCs. Interface management process and interfaces defined in ITT.
FEED CHALLENGES - 1/2

- **Nigerian Content Requirement for Feed Execution In-Country**
 - FEED office established in Lagos
 - Experienced Technical leads with Bonga Main/FPSO experience to drive the process
 - Specialist engineering support from Shell Affiliate teams – Hull design, CFD, Smoke & Gas Dispersion, etc.
 - Perform Pre-FEED in-house before involvement of local Engineering companies

- **Managing Shell Internal Stakeholder Interests**
 - Application of Shell Assurance Processes – DEM 1 & 2, Discipline Control Assurance Framework (DCAF), selection of codes and standards
 - Strong Process Safety involvement in key design decisions e.g. topsides layout, FPSO heading, HC gas blanketing, flare sizing and orientation, etc.
 - External Peer Reviews for each Discipline Engineering output

- **Managing Inter-Discipline Interfaces**
 - FEED delivery primarily through the Deepwater functional matrix organization
 - Package leads (Topsides, Hull) and Technical Delivery have line of sight
 - Joint FEED activities – Topsides layout review, Integrated FEED HAZOP, PDMS review, etc.
Managing Topsides & Hull Interfaces
- Single Discipline oversight for Topsides and Hull equipment
- Topsides weight management – Topsides NTE weight, Riser Loads, etc.
- Topsides – Hull interface meetings

Feed Completion within 18 Months, on Time for ITT
- Performance management through weekly reporting against plan
- Development of ITT Scope of Work and Technical Specifications
BEST PRACTICES & CONCLUSIONS - 1/2

- Managing the transition to FEED
 - Basis for Design Document
 - Set-up Management of Change (MOC) Process
 - Maximise the use of existing design templates
 - Alignment of Technical Leads

- FEED Deliverables and Assurance
 - Define technical deliverables and man hours
 - Technical Assurance process
 - Establish and communicate the level of detail of FEED across project
 - Set-up reporting and performance management metrics
 - External Peer Reviews and Integrated Design Review

- Strong Teams Deliver
 - FEED execution strategy and location of core FEED team
 - Strong homogeneous matrix organization
 - Strong Operation Readiness & Assurance involvement
 - Strong Technical HSE team validating key design decisions

![Diagram of topsides and hull with functional areas]

- TOPSIDES
 - PROCESS
 - MECHANICAL
 - STRUCTURAL
 - PROCESS AUTOMATION CONTROL OPTIMIZATION
 - ELECTRICAL
 - TECHNICAL HSE

- HULL

Copyright of Shell Nigeria Exploration and Production
BEST PRACTICES & CONCLUSIONS - 2/2

- Post FEED Management
 - Standard templates for FPSO design e.g. design philosophies, P&IDs, PDMS model, etc.
 - FEED Lesson Learned database
 - Provision of FEED clarification to Tenderers in face-to-face meetings during Technical Tender phase

- FEED Verification during Tendering
 - FEED documents included in the ITT package for review and verification by Tenderers
 - Any qualifications priced-in by the tenderers
 - Post-Tender, Contractor owns the FEED and uses as the basis for the detailed design
 - Any updates, enhancement/optimization required forms part of detailed design development by EPC Contractor

COMPANY TECHNICAL DOCUMENTS
- Rely Upon Information
- Design Philosophies
- FEED Documents

EPC FEED VERIFICATION
- Independent calculations
- Leverage norms & experience
- Vendor data
- F2F FEED clarification meetings
- 6 – 8 months

EPC VERIFICATION REPORT
- Report on findings
- Qualifications if any
- Topsides weight envelope
- Hull principal dimensions

Technical Dossier in ITT Package
FEED Report & Certificate of Verification
THANK YOU

ROSEMARY IFEAGWU
Engineering Manager Floating Systems

DEBO TAIWO
Technical Delivery Manager

YEMI SUARA
Topsides Lead

ALI ANATURK
Hull Lead (2010 – 2013)

SJORS JANSSEN
Hull Lead (2013 – Present)

CHARLES ESSIEN
FPSO Delivery Manager
Bonga Southwest/Aparo Project
Shell Nigeria Exploration & Production Company
21/22 Marina
PMB 2418 Lagos

E-mail: c.essien@shell.com
Tel (Mobile): +234 807 03 66071