Time-domain Nonlinear Coupled Analyses Covering Typical Mooring and Riser Configurations for FPSOs

Author: Fan Joe Zhang
Presenter: Styrk Finne
DNV GL - Software
Contents

• Typical analysis for the design of FPSO mooring, riser and offloading system
• FPSO mooring alternatives
 • Spread mooring (MPM)
 • Turret mooring (SPM)
• Oil offloading Options
 • Tandem offloading
 • Side-by-side offloading
 • Catenary Anchor Leg Mooring (CALM) terminal
• Examples
Analysis for the design of FPSO mooring, riser and offloading system

Mooring alternatives

- Spread mooring (MPM)
 - Mooring and riser
 - SCR
 - Bending stiffener and jumper
 - FPSO coupled with TLP

- Single Point mooring (SPM)
 - Riser alternatives
 - SCR
 - TLR
 - SHLR
 - Accidental analysis
 - Detachable turret
 - SPM with DP

Offloading

- Tandem
 - Side-by-side

- CALM buoy
 - CALM buoy with shuttle tanker
 - CALM buoy with FTB and shuttle tanker
Typical workflow

- Modelling (GenIE)
- FEM models
- Hydrodynamics (HydroD)
- Hydrodynamic coeff.
 - Added Mass and Damping
 - 1st and 2nd wave forces
 - Wave drift damping
 - Etc.
- Time domain coupled analysis (DeepC and Sima)
Mooring Types

Spread Mooring

Turret Mooring
Offloading alternatives

Tandem

Side-by-side
Mooring system

- Water depth 1,400 m
- 14 mooring lines
- Non-collinear environment

Environment Condition - West Africa - 100 Years Return Period (Ref. DNV-OS-E301, DNV-RP-C205)

<table>
<thead>
<tr>
<th></th>
<th>Wave (Wind)</th>
<th>Swell</th>
<th>Wind</th>
<th>Dir</th>
<th>Current</th>
<th>Dir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hs (m)</td>
<td>Hs (m)</td>
<td>m/s</td>
<td>(deg)</td>
<td>(m/s)</td>
<td>(deg)</td>
</tr>
<tr>
<td></td>
<td>Tp (s)</td>
<td>Tp (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabon</td>
<td>2.5</td>
<td>4.0</td>
<td>21.1</td>
<td>210</td>
<td>1.36</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>15.2</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MPM FPSO Mooring lines

<table>
<thead>
<tr>
<th></th>
<th>Length (m)</th>
<th>Nominal D (mm)</th>
<th>Drag Coefficients</th>
<th>Added Mass</th>
<th>Mass in air (kg/m)</th>
<th>Axial Stiffness (N)</th>
<th>Min Breaking Load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cdy</td>
<td>Cay</td>
<td>Cax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cdx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Chain</td>
<td>R4 studless</td>
<td>150</td>
<td>119</td>
<td>2.4</td>
<td>0.8</td>
<td>281.8</td>
<td>1.209E+09</td>
</tr>
<tr>
<td>Center wire</td>
<td>SPR 2 unsheathed</td>
<td>2000</td>
<td>119</td>
<td>1.2</td>
<td>0.08</td>
<td>56.0</td>
<td>5.721E+09</td>
</tr>
<tr>
<td>Bottom Chain</td>
<td>R4 studless</td>
<td>150</td>
<td>114</td>
<td>2.4</td>
<td>0.08</td>
<td>258.6</td>
<td>1.110E+09</td>
</tr>
</tbody>
</table>
Spread mooring with risers and umbilicals

14 mooring lines, 8 production risers, 4 gas injection riser,
4 water injection risers, 4 umbilicals
Results and post-processing
Results and animation

Bending My

Shear Sz
With TLP

- 2 floaters
 - TLP and FPSO
- Positioning system
 - 14 mooring lines
 - 12 tendons
- Risers and umbilicals
 - 8 production risers for FPSO
 - 11 TTR for TLP
 - 4 gas injection riser and 4 water injection risers
 - 4 umbilicals for FPSO
 - 5 connecting umbilicals
Results

Surge

- TLP Surge
- FPSO Surge

Heave

- TLP Heave
- FPSO Heave

Frame: 280/400
Time: 344.5 s
Turret mooring and riser analysis

• Mooring analysis

• Riser configurations\(^4\)
 • Steel Lazy Wave Riser (SLWR)
 • Tension Leg Riser (TLR)
 • Single Line Hybrid Riser (SLHR)
SLWR

• Compliant riser system
 • An alternative to SCR
• Lower stress and fatigue damage near the touch down point (TDP)
 • Maximum vertical motion at the riser hang off point is high in 100-year hurricane
• Optimized by
 • Examining riser performance in extreme sea states
 • Minimizing mount of buoyancy
• Parameters of interests
 • Max and min effective tensions
 • Max Von Mises stresses
Results

Preferable to [4]

• Place the “wave” as close as possible to the seabed
• Have enough buoyancy to maintain the “wave” shape up to the extreme far position
Tension Leg Riser (TLR)[5]

In the case study, 6 SCR was used, departing on each side of the buoy.
Decoupling motions of FPSO
Single Line Hybrid Riser (SLHR)[5]

• A hybrid decoupled riser system
 • Decoupled from motions of FPSO

• SLHR composed of
 • Vertical rigid pipe
 • Stress joint and suction pile
 • Gooseneck connecting riser and flexible jumpers
Modelling
Brief comparison
Breaking line transient analysis
Comparison – Intact and damaged, motions
SPM FPSO with rotatable turret model
Detachable turret (e.g. MUNIN FPSO)
Turret motions

-97 m
Side-by-side offloading with SPM FPSO

- Multi-body coupling
- Hydrodynamic coupling
- Fenders
- Connecting lines
- Etc.

Hydrodynamical Couplings
- c_FPSO_Tanker
 - Radiation Data
 - Coupled Frequency Dependent Added Mass
 - Coupled Frequency Dependent Damping
 - Retardation Function
 - Coupled Added Mass Infinite

- Point Fenders
 - PF
 - Roller Fenders
 - RF_1
 - RF_2
 - RF_3
 - RF_4

Fixed Elongation Couplings
- Conn_bf1
- Conn_bf2
- Conn_bf3
- Conn_bf4
- Conn_sfl1
- Conn_sfl2
Hydrodynamic coupling calculation in Wadam
CALM buoy
More complex setting

3 bodies
20 slender structures
Decoupled motion of SPM and FTB
Dynamic loading on the flowlines reduced
Summary

- Sesam from DNV GL covers comprehensive analysis of FPSO mooring and offloading alternatives including
 - Spread mooring and turret mooring
 - Turret mooring with thrusters
 - SCR, FTB, Hybrid, etc.
- Global and local analysis easily simulated
 - Bellmouth and jumper analysis
 - Local turret analysis
- Mooring (riser) disengaged transient analysis provides more confidence
- Detachable turret analysis
References

