Deep Water Umbilicals – Challenges & Technology Solutions

Ian Probyn – R&D Business Development Manager
Technip Today

- With engineering, technologies and project management, on land and at sea, we safely and successfully deliver the best solutions for our clients in the energy business
- Worldwide presence with 38,000 people in 48 countries
- Industrial assets on all continents, a fleet of 27 vessels (6 of which under construction)
- 2014 revenue: €10.7 billion

Energy is at the core of Technip
Strategically Positioned Manufacturing Locations

Technip Umbilicals Ltd. Newcastle, UK
- TPU, STU, ELE
- VHAM
- R&D Centre

Technip Umbilicals Inc. Houston, USA
- STU, ELE
- VHAM

Angoflex Ltda. Lobito, Angola
- STU, ELE
- Large storage carrousels

Asiaflex Products. Johor, Malaysia
- TPU, ELE
- Combined Flexible & Umbilical plant

Supply thermoplastic and steel tube umbilicals
Dedicated umbilical R&D centre
What is a Subsea Umbilical?

- The critical connection to control and supply subsea oil and gas extraction equipment.
Key Factors of Deep Water Umbilical Design

- Deep water presents a number of key challenges, each of which must be considered during the early design stage:
 - Umbilical design: component mix, capacities, manufacturing assets
 - Installation: hold back tensions, effect of DAF, friction, track length / equipment, crush load, heavier inner bundles, offshore hold time
 - In-service conditions: utilisation, fatigue, buoyancy, host vessel type,
Trends of Deep Water Umbilicals

- Increasing installation water depth
- Increasing number of components
- Increasing weight per length
- Increasing top tension

\[Tension_{top} = \frac{Weight}{Length_{water}} \times Depth_{water} \times DAF \times CF \]

Deep water umbilicals drive greater installation loads
Deep Water Installation

- The install-ability of an umbilical is governed by key factors

Each factor can be related using the following:

\[\text{Length}_{\text{track}} \times \text{Force}_{\text{crush}} \times N_{\text{tracks}} \times N_{\text{tensioners}} \times \mu_{\text{friction}} = Tension_{\text{install}} \]

Increasing top tension drives; Larger installation equipment, higher crush capacity, greater friction factor
Deep Water Installation – Crush Analysis

Typical industry approach

- **Physical Testing**
 - Prototype manufactured and prepared, tested
 - Expensive, time consuming
 - Gives answer but not much insight

- **Empirical or mathematical modelling**
 - Fast but typically lower accuracy
 - Many assumptions, elastic limit
 - Built from test data

- **2D FEA Analysis**
 - Quick and inexpensive
 - 3D effects can be missed

[Over conservative, unknowns unquantified and higher risk Unnecessarily high crush load]
Deep Water Installation – Crush Analysis

Technip Umbilicals approach

- FEMUS – 3D FEA modelling tool
- Proprietary software developed by Technip
- Fast and accurate generation of complex 3D FEA models
- Fully validated against physical test
Deep Water Installation – Crush Analysis

- FEMUS – 3D modelling tool
 - Allows interrogation of the umbilical and optimisation of design
 - Crush capacity tailored for installation scenario

- Increased confidence, reduced conservatism, reduced cost
- Greater insight into behaviour
Deep Water Installation – Installation Equipment

Typical industry approach

- Utilise sufficient FoS
- Physical test to explore / confirm umbilical limits
- Increase risk on product (unknowns not quantified)
- Larger, more expensive lay-spread
- Unnecessary high crush load

Conservative FoS Unknowns, added cost and risk
Deep Water Installation – Installation Equipment

- **FEMUS – 3D modelling tool**
 - Tool can be used to interrogate installation set-up
 - Advise best installation scenario: Pad width, type, spacing

Greater confidence, reduced risk and less cost
Deep Water Installation – Friction

Typical industry approach

- Accepted friction co-efficient & Factor of Safety
- Physical tests to confirm friction factor

Reliant upon high FoS, more unknowns, more risk
Deep Water Challenges & Solutions

Deep Water Installation – Friction

Technip Umbilicals approach

- Innovative, patent pending high friction tape “Compressi-Grip”
- When crushed, friction increased ~x2
- When crush removed, friction released
 - no affect on fatigue

Increased friction during installation; deeper water, less crush force, less risk, reduced cost.
Deep Water Operation – Top Tension

- Top tension is a function of the water depth, umbilical weight, vessel motion (DAF) and lay configuration.

- Axial strain is a function of the tension and stiffness of the umbilical cross section.

\[
T_{\text{topside}} = F[WD, DAF, Mass/m, Config]
\]

\[
e_{\text{topside}} = F[T_{\text{topside}}, EA_u]
\]

\[
e_{\text{topside}} = \frac{T_{\text{topside}}}{\int EA_i} = \frac{WD \times DAF \times Mass/m}{\int EA_i}
\]

- Reduce weight
- Increase stiffness
Deep Water Operation – Top Tension

Reduce weight

- Target, high density, low strength components = Cables
- Innovative and patented solution: Use high strength Aluminium

Less weight, higher strength, better fatigue, greater water depth capability, less risk
Deep Water Operation – Top Tension

Increase axial stiffness

- High strength strain members, increase stiffness, reduce strain
- Full ISO and material qualification
- In-service today

High stiffness, high strength, less strain, lower risk
Deep Water Operation – Top Tension

Increase stiffness and reduce weight

- **Innovative and patented solution**
 - Evolve the umbilical structure down the water column where extra stiffness is not required

<table>
<thead>
<tr>
<th>Section</th>
<th>Strain Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High Tensile Strand</td>
</tr>
<tr>
<td>B</td>
<td>Evolving joint</td>
</tr>
<tr>
<td>C</td>
<td>Polymer Filler</td>
</tr>
</tbody>
</table>

- **Evolving Joint**

- **Tensile Test Results:**
 - PC Strand to PE Filler

- **Crush Capacity**
- **Number of Tracks**
- **Topside Tension**
- **Track Length**
- **Shear Friction**

Installation
Conclusions

- Ever more complex deep water umbilicals drive higher topside tension and higher installation forces, increasing risk and cost.

- **Upfront engineering analysis tools can deliver:**
 - detailed insight into structural behaviour and greater confidence in design
 - reduce conservatism and optimise the lay-system interaction

- **Technologies to improve deep water umbilicals:**
 - compressi-grip tape to increase friction
 - light weight, high strength aluminium cables
 - high strength strands
 - evolving structures

Taking umbilicals further……. and deeper.