The SpoolSep
An innovative solution for Subsea Produced Water Separation for deep-water / high pressure applications

SpoolSep Testing Loop

Artistic view of SpoolSep Subsea Separation Station
Agenda

- Subsea L/L separation
- SpoolSep principles and design
- Qualification tests
- Conclusion
Principles and Incentives

- **Subsea L/L separation and water Re injection**
 - **Principle**
 - SpoolSep for subsea bulk water separation
 - Made of several horizontal pipes working in parallel
 - Dedicated to deep/ultra deep waters as well as high internal pressure applications
 - High flowrates
 - **Incentives**
 - **Mature fields**
 - Decrease back pressure on wellhead
 - Increase recovery
 - Debottleneck topsides
 - Allow new tie back to existing facility
 - **New fields**
 - Increase recovery
 - Optimize topsides

- **Flowrate**
 - **Water Depth (m)**
 - **Marlim**
 - 900m WD
 - 20 kbdp
 - **Troll Pilot**
 - 340m WD
 - 60 kbdp
 - **Tordis**
 - 210m WD
 - 100 kbdp
SpoolSep Liquid/Liquid Separator

- **SpoolSep**
 - Does not require Large Pressure Vessels
 - Suitable for Deep and Ultra Deepwater
 - Reliable Process Design (Gravity Separation)
 - Good Slug Handling Capabilities
 - Modular system: based on deepwater spools design
 - “Off the Shelf” Components

- **Subsea Station Architecture**
 - 2 foundations
 - 1 for the station with all the process
 - 1 smaller for pipes support
 - 1 subsea station with main process equipment
 - All active parts gathered on the same structure
 - standard integration and test principle
Separation Principle

Outlet: several options
- Independent outlet for each phase
- Oil and gas recombination (stand pipe)

Base case with stand pipe
- a single outlet for water and for light phase (collectors)
 - Water level controlled by liquid pumps
 - Oil and Gas exported to surface (MPP)
Test facility design & Test philosophy

FROM

- SpoolSep design (full scale)

Performances vs Design criteria?
- OiW content
- WC in oil outlet

- Scale 1 design:
 - 8 pipes of 21.75” ID, 50m L

Design criteria
- Flow regime
- Residence time
- Cut off diameter

TO

- Reduced scale tests & Prototype design

Same performances

Superficial velocities conservation

Flow regime conservation

Scale (1/2.8)

Flow loop capacity

- Reduced scale design:
 - 4 pipes of 8” ID, 18m L

Prototype design and definition of tests conditions

Several variable parameters
- Flowrates – flexibility
- Inlet water content
- Inlet gas volume fraction
- Inlet shear/mixing condition
- Water hold up
- Inclination
- Flow regime

Base case for design: WoA
- Liquid 92-50 kbdp
- 75-10% GVF
- 30-85% WC
- DP 235 bar, 1340mWD
- Separation @60 bar, 50°C
- Oil @ sep cond. 4 cP, 790 kg/m³
Flow Loop Principle

Test facility at Nantes
Flow Loop Assembly

Transparent Model
Reduced scale 1/2.76
4 spools L 18m
MainPipe 200mm ID
Feedline 56mm ID
Part 1 Experimental Program: Separation performances

- 144 tests
- 4 spools working in parallel
- Data acquisition
- Photos /films
- Operating points
- Flow patterns

Horizontal flows
GVF impact

OP1_ QI_40m3/h_WC35%_GVF57%
OiW content

Design criteria references for OiW performances with

- water velocity
- residence time
Conclusions

- **Evaluation of design criteria...**
 - velocity, residence time, flow patterns

 ...**versus targeted performances**
 - Oil in Water content / Water in Oil content
 - Level control

- Better assessment of **gas impact on SpoolSep design**

- Confidence in **design flexibility** (diameter and length) to accommodate wide range of requirements
Contact Information

Sadia SHAIEK
Saipem sa
sadia.shaiek@saipem.com
+33 1 61 37 71 15

MCE Deepwater Development
8-10 April, 2014
Madrid, SPAIN