Qualification of Deepwater Power Umbilical

Alan DEIGHTON – Technip Umbilical Systems
MCE DEEPWATER DEVELOPMENT 9th April 2014
Table of Contents

1. Background
2. Component Qualification
3. Umbilical Manufacture
4. Umbilical Qualification Programme
5. Summary
Why Qualify Aluminium for Subsea?

- **Increasing demand for deep water electrical power:**

 - Water depth capability of copper limited by poor material properties
 - R&D study
 - Exceed the water depth limits of conventional copper cables by innovating with lightweight, high strength, electrical conductors.

- **Subsea Pumping Requirements**
 - Ref: Offshore Magazine March ’12

 - Subsea Gas Compression
 - Subsea Boosting
 - Subsea Water Injection
 - Subsea Separation

 - Chinook
Conductor Investigation

- Initial Conductor Investigation

<table>
<thead>
<tr>
<th>Conductor Material</th>
<th>Conductivity (% of Copper)</th>
<th>UTS (Mpa)</th>
<th>Density (g/cm³)</th>
<th>Ratio Score Conductivity × UTS Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (Standard Plain Annealed)</td>
<td>100</td>
<td>220</td>
<td>8.89</td>
<td>2.47</td>
</tr>
<tr>
<td>Copper Iron Alloy</td>
<td>70</td>
<td>700</td>
<td>8.89</td>
<td>5.51</td>
</tr>
<tr>
<td>Aluminium (6000 series)</td>
<td>52</td>
<td>295</td>
<td>2.69</td>
<td>5.70</td>
</tr>
<tr>
<td>Composite (Aluminium plus carbon strength member)</td>
<td>54</td>
<td>314</td>
<td>2.85</td>
<td>5.95</td>
</tr>
<tr>
<td>Aluminium (Standard grade 1350)</td>
<td>61</td>
<td>152</td>
<td>2.71</td>
<td>3.42</td>
</tr>
</tbody>
</table>

- Selected for further investigation

Aluminium Composite

Aluminium 6000 series

Cu Iron Alloy
Aluminium Cable Water Capability

Water Depth Capability

- \[WD = \frac{\mu \varepsilon_{\text{limit}} (E_c A_c + E_s A_s)}{[A_c (\rho_c - \rho_s) + A_s (\rho_s - \rho_c)] g \times DAF \times CF} \]

- Dependant upon ratio of conductor material and strength member.
- \(\mu = \) Stress utilisation (ISO13628)
- Catenary Factor = 1.1
- DAF
 - 1.1 (Static)
 - 1.3 (Quasi-dynamic) – TLP / Spar
 - 1.5 (Highly dynamic) – FPSO
- Assume only strength member is load bearing
 - Available tensile strain of steel tube reduces with increased pressure.
Aluminium Cable Qualification Program

- **Manufacture**
 - 300mm² 18/30kV triplex extruded and dry cured design.

- **Electrical**
 - Qualified by type testing to ISO 13628-5 and IEC 60502-2.

- **Mechanical**
 - Initial conductor fatigue testing performed gave a fatigue life 15x better than copper.
Aluminium Cable Corrosion Testing

Design
- High strength Aluminium 6000 series corrosion resistant conductor material.
- Conductor strands water blocked to prevent longitudinal water migration

Corrosion Tests
- Hydrostatic test at 300bar, 90°C for 1-year.
- Model samples with thinner walls also tested at 300 bar 90°C for 6-months and conductors subjected to SEM examination.
- DC voltage applied for 6 months on model samples in attempt to accelerate corrosion.
- Ion permeation into XLPE limited to below 200 µm depth.

Conclusion
- Aluminium cable will be suitable for a design life in excess of 30 years.
Aluminium Cable Thermal Investigation

- **Tensile Testing - Aged Samples**
 - Tests on aged Al at 80 degrees, with samples taken at 0days, 28days to 4yrs.
 - Results demonstrate that Aluminium does not suffer a reduction in strength due to thermal aging.

- **Tensile at Elevated Temperature**
 - Samples of both Al and Cu strands, were tested at varying temperatures: 20 to 80°C.
 - The effect on Yield, Tensile Strength and Modulus were investigated.
 - Results show a reduction of tensile strength (Al 4.5%, Cu 8%). No affect to modulus.

- **Creep**
 - Testing for 1000hrs at 25% and 50% utilisation at 20 to 80°C.
 - Creep on Cu wire at 40°C and 50% utilisation, none on Al until 80°C.

- **Fatigue**
 - Tests on aluminium and copper at 70°C.
 - Aluminium fatigue life at temperature reduced 2.5-3x but still well above Cu at ambient.
 - Copper tests on going but showing similar reduction in fatigue life.
Aluminium Cable Splicing

- **Aluminum Conductor Welding**
 - Fill and Braze Process with automatic welder to give consistent low resistance, high quality joint.

- **Insulation**
 - Insulation tapes cured and cross linked by oven heating.

- **Inspection and Testing**
 - X-ray of conductor and insulation.
 - High Voltage AC testing to $3.5U_0$. Partial discharge testing to $1.73U_0$.

- **Qualification Tests**
 - Tension and bending.
 - IEC 60502-2 Type Tests, ie Bending, HVAC and Partial Discharge.
Subsea Connector Qualification Program

- **Connector**
 - Qualification undertaken on wet mate 18/30kV connector system.
 - Connector housing and sealing would remain unchanged regardless of conductor material.
 - Therefore qualification has focused on conductor / connector interface.

- **Standards**
 - Qualification testing performed in accordance with :-
 - SEPS JIP – Subsea Electrical Power Standardisation
 - (Statoil Spec) TR2313 – Subsea Electrical High Voltage Connector Assemblies
 - IEC 61238-1 - Compression and mechanical connectors for power cables for rated voltages up to 30kV

- **Test Programme**
 - Successfully passed all tests including : Temperature rise, Heat cycling, Short circuit, Mate-demate, Contact resistance and Pull Test.
Umbilical Manufacture

Main focus for qualification:
- 300mm² 18/36kV High strength aluminium umbilical + steel strand strength members manufactured.
- 150mm² electrically equivalent copper design manufactured for comparison testing.

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor Area</td>
<td>150mm²</td>
<td>300mm²</td>
</tr>
<tr>
<td>Umbilical OD</td>
<td>200mm</td>
<td>258mm</td>
</tr>
<tr>
<td>Mass in Air (kg/m)</td>
<td>55.3kg/m</td>
<td>45.2kg/m</td>
</tr>
<tr>
<td>Weight in Water (N/m)</td>
<td>287N/m</td>
<td>51N/m</td>
</tr>
<tr>
<td>Cable Stress Utilization at 3000m water depth</td>
<td>1.75</td>
<td>0.21</td>
</tr>
<tr>
<td>Maximum Water Depth at 0.80 cable stress utilization – ISO 13628</td>
<td>1370m</td>
<td>4000m +</td>
</tr>
</tbody>
</table>

Umbilical Manufacture
- 100m long sample.
- Electrical triad sub-bundles laid.
- Main umbilical laid in single pass on VHAM at DUCO Inc.
- PE Outer sheath extruded.
- Includes 2 complete aluminium cable splices.
Umbilical Qualification Overview

To qualify the umbilical design, a testing programme was defined:

<table>
<thead>
<tr>
<th>Test</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tensile</td>
<td>Axial stiffness, torque, rotation, termination UTS</td>
</tr>
<tr>
<td>2 Bend Stiffness</td>
<td>Characterise bending stiffness property</td>
</tr>
<tr>
<td>3 Tension & Bend</td>
<td>Installation simulation, crush force, low cycle fatigue</td>
</tr>
<tr>
<td>4 Crush</td>
<td>Caterpillar tensioner simulation, deformation / function</td>
</tr>
<tr>
<td>5 Friction</td>
<td>Caterpillar tensioner simulation, slip plane and COF</td>
</tr>
<tr>
<td>6 Impact</td>
<td>Rock dumping simulation, energy to consequence</td>
</tr>
<tr>
<td>7 Fatigue</td>
<td>Conductor fatigue performance for service conditions</td>
</tr>
<tr>
<td>8 Clamp</td>
<td>Ancillary equipment simulation, deformation / function</td>
</tr>
<tr>
<td>9 Thermal</td>
<td>Ampacity of design within simulated I-tube</td>
</tr>
<tr>
<td>10 Creep</td>
<td>Creep property within umbilical structure</td>
</tr>
<tr>
<td>11 Axial Compression</td>
<td>Characterise behaviour for axial compressive force</td>
</tr>
</tbody>
</table>

- Qualification regime to be assessed by DNV for Qualification of New Technology in line with RP A203
Umbilical Qualification Programme

- **Tensile**
 - Characterise umbilical elongation, induced torque, rotation and end termination strength by application of tensile force.

- **Bend Stiffness**
 - Determine bend stiffness property for comparison to calculation.

- **Fatigue Test**
 - Demonstrate 25 year service life. Analysis based on 3000m water depth.

- **Crush Test**
 - Understand the effect of installation (caterpillar tensioner) crush load on umbilical and component deformation / functionality
Umbilical Testing

- **Thermal Test**
 - Determine the ampacity of the aluminium umbilical design in comparison to the electrically equivalent copper umbilical design

- **Test Description and Key Parameters:**
 - Sample current loaded via transformers
 - Temperature monitored via thermocouples
 - 2, 3 & 4 circuit configurations tested

- **Result (3 circuits):**

- **Conclusion:**
 - Umbilical Testing has confirmed superiority of aluminium design
Summary

- **High Strength Aluminium Power Cables**
 - Light weight, high strength corrosion resistant aluminium conductor.
 - Load share capability.
 - Extensive risk based technology qualification program, including:
 - Corrosion, Fatigue, Electrical, Splicing, Termination

Commercial Benefits;
- Water depth capability > 3000m
- Superior reliability at any water depth
- Greater fatigue capacity
- Reduced electrical stress
- Dynamic mass can be optimised
Thank You