New Generation of High Strength Sour Service Drill Pipe: A Breakthrough Innovation to Address Ultra-deep and Extended-Reach Drilling Challenges Combined With H₂S Environments

R. Rodrigues, V. Flores, K. Godeke, Vallourec Drilling Products
A. Thomazic, F. Thebault, Vallourec Research Center France
Sour Service Environment

Our challenge: Minimize risks

• What is Sour Service?
 – Sour Service: Well containing H₂S
 – Origin: H₂S comes from decomposition of organic material.

• Consequences?
 – Hazardous to human health, living organisms and environment.
 – Loss of well due to Sulfide Stress Cracking (SSC)
Risks Associated to Sour Service

Risks on standard API grades (= non Sour Service grade):

- **Sulfide Stress Cracking**
 - Unpredictable brittle failure
 - Fishing costs
 - Non-productive time for drilling contractors

- **Failure example on 5” DP, S-135 API grade**
Sulfide Stress Cracking

Escalation factors:
- When Yield strength
- Grade H_2S resistance
- SSC phenomenon occurrence
- Failure risks

Catastrophic Failure

- Low pH
- Water
- High H_2S

\Rightarrow Corrosion

\downarrow

H Charging

Low temperature

Applied load

[Diagram showing a pipeline with corrosion and cracking, indicating the factors leading to catastrophic failure.]
NACE Testing Methods

NACE TM 0177 (2005) defines 4 testing methods
- **Method A** is the most used for drilling products
- **Solution A** is the most used environment (Severe Sour environment)

NACE A

NACE “Tensile Test” under uniaxial tensile load.
- Failure/no failure test
- Test duration: 720h

<table>
<thead>
<tr>
<th>Acceptance Criteria:</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
</table>

![Image of test setup with PASS and FAIL criteria](image-url)
NACE Test A: Laboratory Procedure

Environmental Testing Chamber

Application of tensile load $= \% \text{ SMYS}$

Example of samples under testing process
Evolution of the Drilling Envelope

- Complex well profiles associated to H_2S:
 - Deep wells (ex: Canada, China, North Iraq)
 - Deepwater projects (ex: Brazil)
 - Highly deviated and ERD wells (Ex: Middle East)

- Tensile limitations:
 - Current Sour Service grades on the market are limited with 105 ksi YS max.
 - Operators and drillers are pushed to use S-135 in H_2S environments with high risk
 - S-135 failures in such wells are being reported

- Technological challenges:
 - higher YS is generally detrimental to Sulfide Stress Cracking
 - Not always possible to increase dimensions with existing Sour Service grades
Example of S-135 Failure

- **Tarim basin:**
 - Tarim is China’s largest petroliferous basin, in which a total of 27 oil & gas fields have been discovered by CNPC since 1989.
 - Operated by Petrochina Tarim Oilfield.

- **H₂S failures:**
 - S-135 API drill pipe used in a well with 0.5% H₂S
 - Failure of the top of the string (tension max):
 - Failure at 648 m TVD
 - Bit depth 5,900 m

- **Root cause: Sulfide Stress Cracking**
 - Improper grade selection: S-135 instead of Sour Service DP
 - Incident and root cause analysis reported:
 - *Materials Performances, page 69, March 2010*
High Strength Steels Benefits

The Sour Service solution for complex well profiles

<table>
<thead>
<tr>
<th>KPI</th>
<th>High grade performance</th>
<th>Added Value</th>
</tr>
</thead>
</table>
| **H₂S Resistance** | H₂S resistance **above S-135** performance: | NACE TM-0177 Test using Method A (tensile test)
Steel A: qualified using 90% AYS
Steel B: 70% SMYS in Solution A |
| | Steel A: qualification tests in Region 1 of the NACE MR0175 | |
| | Steel B: tested at a frequency of 1 sample per heat / heat treatment batch / 200 jts | |
| **Tensile Capacity** | Higher YS than current 105 ksi- Sour Service grades on the market
Can address ERD and Deep well profiles | **+12.5%** Tensile Capacity |
| **Torque and Drag** | Thin wall option at iso-performance compared to 105 ksi-Sour Service grades on the market
Light weight string | Ex: 5 ½” DP
→ Weight reduction of -9.2% for the same tensile capacity |
| **Overpull Capacity** | Additional overpull compared to 105 ksi-Sour Service grades on the market
Lower risk of failure with presence of H₂S compared to S-135 grade | Increased by **12.5%** |
Sour Service Grades

- Sour Service steel = material with resistance to H_2S

- Key processes control:
 - Steelmaking:
 - Supreme cleanliness
 - Dedicated steel chemistries
 - Heat treatment:
 - Homogeneous and fine microstructure
 - Specific heat treatments (double Q & T)
 - Welding:
 - Controlled hardness
 - Dedicated tempering
Mechanical Properties

<table>
<thead>
<tr>
<th>Grade name</th>
<th>Steel A</th>
<th>Steel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour Domain</td>
<td>Mild Sour</td>
<td>Intermediate Sour</td>
</tr>
<tr>
<td>Pipe Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Strength (ksi)</td>
<td>120-135</td>
<td>120-135</td>
</tr>
<tr>
<td>Minimum Ultimate Tensile Strength (ksi)</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Controlled Maximum Hardness (average)</td>
<td>37 HRC</td>
<td>35 HRC</td>
</tr>
<tr>
<td>Minimum Single Charpy Impact Value (at room temperature, ¾ size sample)</td>
<td>38 J (28 ft-lbs)</td>
<td>38 J (28 ft-lbs)</td>
</tr>
<tr>
<td>Minimum Average Charpy Impact Value (at room temperature, ¾ size sample)</td>
<td>44 J (32 ft-lbs)</td>
<td>44 J (32 ft-lbs)</td>
</tr>
<tr>
<td>NACE TM-0177 Method A Solution A Threshold in % SMYS pipe</td>
<td>None</td>
<td>70% SMYS</td>
</tr>
<tr>
<td>Tool Joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Yield Strength (ksi)</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>Minimum Ultimate Tensile Strength (ksi)</td>
<td>140</td>
<td>125</td>
</tr>
<tr>
<td>Hardness (single)</td>
<td>285 BHN Min.</td>
<td>32 HRC Max.</td>
</tr>
<tr>
<td>Minimum Single Charpy Impact Value (at room temperature, full size sample)</td>
<td>38 J (28 ft-lbs)</td>
<td>47 J (34 ft-lbs)</td>
</tr>
<tr>
<td>Minimum Average Charpy Impact Value (at room temperature, full size sample)</td>
<td>44 J (32 ft-lbs)</td>
<td>54J (39 ft-lbs)</td>
</tr>
<tr>
<td>NACE TM-0177 Method A Solution A Threshold in % SMYS Tool Joint</td>
<td>None</td>
<td>50% SMYS</td>
</tr>
</tbody>
</table>
Conclusions

• Thanks to years of research and development, a new “120ksi” Sour Service grades family has been successfully manufactured and commercialized.

• These material offer solutions to overcome Sulfide Stress Cracking issues often found in sour drilling applications:
 • Steel A is SSC resistant at milder test conditions (region 1, ISO1516 part 2) with a large safety margin.
 • Steel B sustained 84 ksi minimum stress in NACE TM0177 - Solution A saturated by 1 bar H₂S.

• These innovations can directly address drilling & safety challenges linked to complex well profiles associated to H₂S, such as deep wells profiles (ex: Canada, China, North Iraq), deepwater projects, or highly deviated and ERD wells.

• A first drillstring of this high strength material (steel A) is already being used for the first time in offshore wells by a major international operating company in the North Sea.
Thank you!
Any question?