INVESTIGATION OF SLUG FLOW IN DEEPWATER ARCHITECTURES

Y. OLANIYAN
TOTAL S.A. France
TOTAL is a major player in the deep offshore arena ...

In Development & Operation ...

- FPSO’s: Girassol, Dalia, Akpo, Pazflor, Clov, Egina
- FPU’s: Moho Bilondo/Alima, Moho Nord
- Water depths: ranging from 500 -1700m
- Innovative technology: Pazflor subsea processing
- Long Subsea Tie-back: 2x20 km flowlines
- Activation: Riser base gas lift & Multiphase pumping

Progress has been made in the deep offshore environment, yet for each case the flow assurance challenges had to be confronted
INTRODUCTION

Deep water architectures can be complex …

..*due to the topography, reservoir locations, drilling constraints etc.*

- Multiphase flow in upward / downward sloping flowlines
- Different possible riser configurations
- Flexible lines connected to topsides etc.

Quite often, flow stability issues are encountered due to the nature of deep water architectures, with fatigue on subsea components becoming more of a concern as the installations age.

In most cases, flow stability – slugging - concerns are identified during deepwater field development studies
INTRODUCTION - SLUG FLOW

Three types of slugging are identified:

Hydrodynamic Slugging
- Instability of “waves” on gas-liquid interface

Terrain Slugging
- Accumulation and periodic purging of liquid.

Operational Slugging
- Rate changes, pigging etc

Main concerns of slugging:
- Instability in downstream process facilities e.g. Level control, compressor trips etc
- Un-steady back-pressure to wells – impacting production
- Fatigue in subsea components e.g. Riser base spools

Different types of slugging exist. The industry relies on simulation tools for slug flow studies

Investigation of Slug flow in Deepwater Architectures, MCEDD 2014 – Madrid, 8 – 11 April 2014
SLUG FLOW IN FIELD DESIGN PHASE

Study Basis
- Production profiles
- Boundary conditions (P,T..)
- Operating constraints
- Flowline/Risers definition

Operation slugging assessment
- Separator/SC surge volume requirement
- Input to site operating philosophy for ramp up & pigging speeds/constraints

Terrain/RB slugging assessment
- Terrain slugging effect reduced to manageable limits
- Gas lift rate recommendation
- Input to site operating philosophy (choking..)

Hydrodynamic slugging assessment
- Provide input for fatigue analysis
- Optimum operating envelope (rate, WC, GOR)
- Proposition for wells routing
- Separator surge volume requirement

Strong reliance on the predictive ability of multiphase simulation tools & expertise of the Flow Assurance engineer

Gas dominated systems

Oil dominated systems
FIELD CASE STUDY

This study concerns a deepwater oilfield in the Gulf of Guinea operated by TOTAL

Key Field Characteristics:
- 30° API crude & GOR ~ 100 Sm³/Sm³
- Water depth of 1400m
- ~ 19km flowlines connected to an FPSO via a Bundle Hybrid Offset Riser (BHOR) system

Field riser base spool has experienced oscillation and trenching with slugging suspected as a contributor

Video: Riser Base Spool
FIELD CASE STUDY

Study was performed using two commercially available multiphase flow simulators:

OLGA v. 5.3.2.4

LedaFlow® v. 1.3

Fluid description (study base case):

Oil = 3117 Sm3/d, GOR = 98 Sm3/Sm3,

Water cut = 22%; Gas lift rate = 200 kSm3/d,

Arrival separator pressure at 23.6 barg

Objective → Confirm existence of slugging and determine its possible impact on the spool behaviour by:

- Matching simulation results with available field data
- Characterizing the slugs at the riser base spool for subsequent fatigue studies
FIELD CASE STUDY – GLOBAL METHODOLOGY

Selection of study date & field data gathering

Simulation models’ set up - Olga & Ledaflow

Apply specific methodology for Olga and Ledaflow

Match field data & simulation results

Slug characterization at riser base spool

Field Pressure Upstream Riser Choke (topsides)

Up to 10 bar pressure variation upstream topside choke for the study base case
FIELD CASE STUDY – SIMULATION METHODOLOGY

Steady State Simulation
- 10 hour transient
- Riser cell size: 10 m
- Flowline cell size: 50 m
- $T = \text{wall}$

First tuning
- Adjust riser choke valve opening to match field choke ΔP

Flow Regime Verification
- Confirm existence of hydrodynamic slugging in flowline/riser

Slug Tracking Configuration
- Calculate slug frequency (Shea)
- Evaluate equivalent Delay Constant

Slug Characterization
- Pressure upstream choke valve
- Pressure at riser-base
- Slug characteristics

Change Delay Constant

If yes

No

Olga Results \approx Field data?

Slug Tracking Simulation

Compare pressure upstream choke valve

With Ledaflow, no iteration but finer meshing which impacts simulation time

Iterative procedure using Olga …
FIELD CASE STUDY – RESULTS

Flow regime prediction

Both simulators predict hydrodynamic slug flow regime in the flowline & spool for the study cases. Further study with specialized slug modules is required.
FIELD CASE STUDY – RESULTS

Matching Pressure Upstream Choke

- With no need for tuning/iteration, Ledaflow matches better the field data frequency and amplitude (compared to Olga), although some peaks are not fully captured.

- For another study case (not shown), Olga shows a good match after several iterations highlighting the complementary nature of both simulators. In this case, Ledaflow was not used due to longer simulation time constraint.
FIELD CASE STUDY – RESULTS

Riser & Flexible Pressure (after matching)

System Pressures

Pressure variation evolution along the line - from riser base to flexible (4 → 8 → 10 bara)

Subsequently, slug characteristics are recovered at the spool
FIELD CASE STUDY – RESULTS

Slug Characteristics at Riser Base Spool

Results show significant slug characteristics at the riser base spool:

- **Slug frequency ~ 20 slugs/hour**
- **Density variation from 310 to 854 kg/m³**
- **~45% of the slugs between 350 – 400 m in length**
- **Slug velocity up to 11.4 m/s**

Detailed data is subsequently provided to pipeline engineers for fatigue analysis:
 - Slug lengths, velocities
 - Slug bubble and liquid densities
 - Slug frequency & Pressure variation

Pipeline engineers concluded that slugging was a contributor to the spool trenching experienced which impacts the spool life span (fatigue)
CONCLUSION

1. Slug flow can pose a problem to operations and could also generate fatigue in subsea components

2. Slug flow investigation is systematically performed for deepwater architectures during conceptual design and measures proposed to assure operations

3. There is an interest to monitor flow parameters and to also inspect lines especially at locations exposed to risk of fatigue

4. Ledaflow simulator being more predictive (does not require tuning/iterations to match field data) is a welcome tool for the F.A. engineer. Both tools (Olga & Ledaflow) are therefore complementary, enabling better study of very technical cases

5. There remains a strong reliance on the accuracy of multiphase simulation software although they have inherent limitations. Thus, there is a continuous drive to improve both the accuracy of the simulators and flow assurance engineering methodology in this domain
The TOTAL GROUP is defined as TOTAL S.A. and its affiliates and shall include the person and the entity making the presentation.

Disclaimer

This presentation may include forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of TOTAL GROUP that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events. TOTAL GROUP does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company’s financial results is provided in documents filed by TOTAL GROUP with the French Autorité des Marchés Financiers and the US Securities and Exchange Commission.

Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

Copyright

All rights are reserved and all material in this presentation may not be reproduced without the express written permission of the TOTAL GROUP.