Completion Deployed Scale Inhibitor Applications in Deep-Water, West Africa

Professor Myles M. Jordan
Nalco Champion
Presentation Content

• Introduction to inorganic scale

• Concept of the pre production squeeze

• Field results for treatments in stimulation fluids
 - Liquid scale inhibitor within acid wash/overflush and frac gel

• Conclusions

• Acknowledgment
Common Oilfield Scales

\[\text{Ca(HCO}_3\text{)}_2 \rightleftharpoons \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \]

Calcium carbonate

\[\text{Ba}^{2+} + \text{SO}_4^{2-} \rightarrow \text{BaSO}_4 \]

Barium sulphate
Pre-Production Scale Treatment

How is it deployed

- Scale inhibitor treatment applied during well completion
- Liquid scale inhibitor in the perforation cleaning acid and overflush and/or linear gel stages and/or cross linked gel
 - Compatible
 - Non-damaging
 - Good retention profile

Radial flow dominated brine inflow: best treatment option is radial matrix treatment

Linear flow dominated brine inflow: best treatment option is SI in linear frac gel
Why Consider this method of scale control?

- Uncertainties in water composition.
- Potential BaSO₄ and CaCO₃ risk.
- Risk of scale at low water cut and poor dispersion of continuous injection treatment.
- Chemical return data provides vital information for scale management program and future squeeze application, if needed.
Seawater (SW) Flood Schematic

Impact of a heterogeneous reservoir on BaSO$_4$ scale risk during SW flooding

SW

FW

AWS

IW = Seawater or Aquifer rich in SO$_4$

FW = rich in Ba, Sr, Ca
Pre Production Scale Inhibitor Application

• Liquid scale inhibitors within fluids “lost” to the formation such as stimulation fluids (acids, linear gel, cross linked gel)

• Solid scale inhibitors (within frac propant or pre pack screens)
Monitoring and Location

Monitoring
• Well Test frequency
• Multiple wells in single riser

Geographic Location
• Analysis capability
• Chemical supply chain
• Equipment limitation
• Expert support
Nature of the WA Fields

Inorganic Scale Challenges

<table>
<thead>
<tr>
<th>Ion in mg/l</th>
<th>Reservoir B</th>
<th>Reservoir B1</th>
<th>Reservoir T</th>
<th>Reservoir L</th>
<th>Reservoir LN</th>
<th>Seawater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>23200</td>
<td>21000</td>
<td>24960</td>
<td>25894</td>
<td>17800</td>
<td>11019</td>
</tr>
<tr>
<td>K</td>
<td>150</td>
<td>136</td>
<td>144</td>
<td>140</td>
<td>272</td>
<td>408</td>
</tr>
<tr>
<td>Ca</td>
<td>2500</td>
<td>1180</td>
<td>2660</td>
<td>1000</td>
<td>884</td>
<td>422</td>
</tr>
<tr>
<td>Mg</td>
<td>380</td>
<td>117</td>
<td>515</td>
<td>318</td>
<td>107</td>
<td>1322</td>
</tr>
<tr>
<td>Hba</td>
<td>19</td>
<td>15</td>
<td>44</td>
<td>230</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Sr</td>
<td>62</td>
<td>52</td>
<td>113</td>
<td>185</td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>Cl</td>
<td>37600</td>
<td>31900</td>
<td>426500</td>
<td>44814</td>
<td>29010</td>
<td>19805</td>
</tr>
<tr>
<td>SO4</td>
<td>45</td>
<td>170</td>
<td>14</td>
<td>5</td>
<td>74</td>
<td>2775</td>
</tr>
<tr>
<td>HCO3</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>636</td>
<td>-</td>
<td>145</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>7.2</td>
<td>7.3</td>
<td>5.8</td>
<td>6.1</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Deep Water WA Field Results

• Frac packed wells
• Liquid scale inhibitor within stimulation stage and fracture gel stage
• Acid phosphonate inhibitor within acid perforation wash/overflush stages
• Neutral phosphonate inhibitor within cross linked gel stages
• Nine wells treated to date
• Three wells currently cutting water
Deep Water WA Field Results

<table>
<thead>
<tr>
<th>Formation</th>
<th>Well code</th>
<th>Life time of the inhibition treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>P1-ST1</td>
<td>15 months and still protected</td>
</tr>
<tr>
<td>B</td>
<td>P3-ST3</td>
<td>4 months and still protected</td>
</tr>
<tr>
<td>B1</td>
<td>P4</td>
<td>31 months and still protected</td>
</tr>
<tr>
<td>B1</td>
<td>P5-ST1</td>
<td>14 months and still protected</td>
</tr>
<tr>
<td>B1</td>
<td>P6</td>
<td>20 months and still protected</td>
</tr>
<tr>
<td>B1</td>
<td>P9</td>
<td>10 months and still protected</td>
</tr>
<tr>
<td>T</td>
<td>P1-ST3</td>
<td>13 months and still protected</td>
</tr>
<tr>
<td>L</td>
<td>P4-ST1</td>
<td>8 months and still protected</td>
</tr>
<tr>
<td>L</td>
<td>P2-ST1</td>
<td>11 months and still protected</td>
</tr>
</tbody>
</table>

- Observed duration of protection for the nine wells treated
Deep Water WA Field Results

<table>
<thead>
<tr>
<th>Well code</th>
<th>Reservoir</th>
<th>Volume acid plus SI conc.</th>
<th>Volume overflush plus SI conc</th>
<th>Volume Frac Gel plus SI conc</th>
<th>Design protected water volume (bbls) for Acid/overflush</th>
<th>Observed or predicted protected water volume (bbls) for Acid/overflush</th>
<th>Observed or predicted protected water volume (bbls), Acid/overflush plus Frac Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-ST1</td>
<td>B</td>
<td>190 bbls (5.4%)</td>
<td>380 bbls (7.7%)</td>
<td>812 bbls (4.6%)</td>
<td>500,000</td>
<td>520,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>P4</td>
<td>B1</td>
<td>577 bbls (5%)</td>
<td>1154 bbls (7%)</td>
<td>1956 bbls (5%)</td>
<td>550,000</td>
<td>490,000</td>
<td>965,000</td>
</tr>
<tr>
<td>P5-ST1</td>
<td>B1</td>
<td>308 bbls (5%)</td>
<td>576 bbls (7.8%)</td>
<td>1725 bbls (4%)</td>
<td>375,000</td>
<td>320,000</td>
<td>860,000</td>
</tr>
</tbody>
</table>

- Fluid stages, inhibitor concentrations and produced water protected
Well P4 Projected Treatment Life

- If all deployed inhibitor is contacted by produced water potential squeeze life 960,000 bbls water protected
Well P1 ST1 Projected Treatment Life

- If all deployed inhibitor is contacted by produced water potential squeeze life 1,000,000 bbls water protected
Conclusions

Many factors influence the suitability of pre-production squeeze treatments for application while completing production wells these include:

- Scaling tendency of the produced water,
- The geographic remoteness of the asset,
- The challenge of monitoring scale control,
- The completion type itself controls the location and stage of the completion program where chemicals can be added,
- The cost of these types of application relative to stand alone classic squeeze treatments need to be considered.
Conclusions

• The presence of scale inhibitor in the initial produced water reduces the risk of a scaling event if the onset of injection water breakthrough is missed in deepwater, subsea wells with limited well test availability.
Acknowledgements

The author wish to thank Nalco Champion an Ecolab Company for permission to present this work.
Back Ground Publications

• NACE 2011, paper no.17984

