Subsea Produced Water Separation with SpoolSep:
A Robust and Efficient Pipe Solution for a Wide Range of Deepwater Applications

Sadia SHAIEK
R.HALLOT, S. ANRES
AGENDA

- Subsea Oil/Water Separation
- SpoolSep Principles
- Installation and Maintenance
- Qualification tests
- Conclusion
Subsea Oil/Water Separation

- **Subsea Produced Water Separation and Re-Injection**
 - Increase recovery
 - Debottleneck topsides
 - Allow new tie-back to existing facility

- **SpoolSep for Subsea Bulk Water Removal**
 - Made of several horizontal pipes working in parallel
 - Dedicated to deep/ultra-deep waters & high internal pressure applications
 - High flowrates
SpoolSep Principles

Main incentives
- Gravity-based Separation (field proven & robust process)
- Made of long parallel pipes with reduced thickness compared to large pressure vessels to cope with Deep & Ultra Deepwaters
- Higher interfacial areas / lower rising distance for oil droplets (improved efficiency)
- Good slug handling capabilities
- Modular system: based on deepwater spools design
- Flexible design to cope with wide range of inlet parameters

Design principles
- Ensure equal fluid distribution
- Same Process control philosophy as per single vessel
- Provide required residence time for efficient oil/water separation
SpoolSep Principles

Spool outlet: several options
- Independent outlet for each phase
- Oil and gas recombination (stand pipe) + water outlet

Process criteria:
- Phase velocity
- Residence time / Cut-off diameter

Selection of:
- Number of spools
- Spool diameter
- Spool length

Design

Typical Performances

Downstream bulk separator
- Maximum OiW: 1000-2000 ppm
- Maximum WC in oil stream: 15%

Re-injection requirements
- OiW: 20-100 ppm
- TSS: 1 to 10 ppm
- Solid particle size: 1-50µm

Inlets & Outlets in the same area

Multiphase production from wells
Water Injection Pumps (O/W interface control)
Oil and Gas exported to surface (MPP) or separately
Subsea Station Design

- **Subsea Station Architecture**
 - 1 or 2 foundations
 - 1 for the station with all the process
 - 1 smaller for pipes support (if needed)
 - 1 subsea station with connecting all the equipments
 - All active parts gathered on same structure
 - Standard integration and test principle

- **Separation spools modules**
 - Within typical spool size envelop
 - Optimization of layout with compact connection
 - Retrievable by IMR vessels
Separation Spool Module

- **Spool Outlet**
- **Separator Inlet**
- **Feed Line**
 - OD 8” typ.
- **Pipe separator**
 - OD 18” to 50” typical
- **Overall length**
 - 10 to 70 m typical
- **Height**
 - 4 to 6 m
- **Separator Outlet**
- **1 off 3-bores clamp connector**
- **Or**
- **1 off dual-bore clamp connector**
- **+ 1 off single bore clamp connector**

Feed Line (Overview):
- **Separation Spool Module**
- **Spool Inlet**

Aker Solutions
Installation and Maintenance

- Typical subsea module handling
- Optimized connection for easier ROV operation
- Standard installation sequence
- Easy Spool recovery
Qualification Tests

- **Phase 1: Design Feasibility**
 - Fluid distribution & level symmetry
 - Gravity separation efficiency
 - Tests loop built with 4 spools at reduced scale (200mm ID, 18m long)
 - Model oils/Tap Water/Air Flows at ambient conditions for visualization
 - Variation of operating conditions: flowrates / WC/ GVF/ shear level
 - Sand settling & flushing characterization

- **Phase 2: Design improvements & process criteria validation**
 - Comparison of several geometries to further improve performances
 - Tests on each spool arranged with specific outlet
 - Internals
Qualification Tests

- Characterization of Horizontal Flow Patterns

- Gas/Liquid Flows
 - Slug Flow
 - Stratified Smooth Flow
 - Stratified Wavy Flow

- Liquid/Liquid Flows
 - Stratified Flows
 - ST & MI
 - DO/W & W
 - DW/O & OW

- Symmetrical behaviour whatever the flow regimes
- Assessment of flow regimes impact on performances and level control requirements
- Definition of velocity criteria to ensure separated phases with required quality
Qualification Tests

- **Validation of Flow Distribution / Level Symmetry & Stability**

 - Equal fluid distribution and balanced phase composition inside each spool
 - Symmetrical behavior of spools: validation of the base principle for level control philosophy
 - High level stability at separation conditions

- **Design Criteria for SpoolSep Sizing**

 - Assessment of design criteria for the range of 100 to 2000 ppmv Oil in Water contents

 ➤ Tests have confirmed separator operability giving design criteria to achieve required performance
Qualification Tests

- **Sand transport depends on:**
 - Liquid velocity and viscosity \((Re) \)
 - Critical velocity, \(V_c \)
 - \(V_c \) increases with increased viscosity
 - Sand granulometry
 - \(V_c \) increases with increased particle size
 - Carrier fluid flow pattern
 - At low velocity, no impact of gas (if stratified flow)
 - At high velocity, easier transport under slugging flows
 - Pipe slope has a significant impact on sand transport

- **Sand handling optimization (no need for internals)**

- **Tests conditions:**
 - Pre-installation of a sand bed in a 110 mmID pipe
 - 2 particle sizes: \(d_{50} \) 64µm & 248µm - 2650 kg/m³
 - Oil or water wetted sand
 - 2 sand bed heights (10%-30% HU)
 - Flowing with different fluids
CONCLUSION

- As part of Subsea Processing systems, the SpoolSep brings robust solution to PWRI applications in deepwater
- Each separation spool can be installed and retrieved easily by subsea connectors
- Confirmation of stability and symmetry of flows within separation spools
- Reliable design to achieve required performances for water re-injection
- Better understanding of criteria for efficient sand transport by fluid flowing
- SpoolSep design flexibility (spool number, diameter and length) allows to accommodate wide range of requirements and conditions
- On-going JIP with TOTAL & PETROBRAS