Emergency Pipeline Repair Systems; A Global Overview of Best Practice

- Brief Introduction to EPRS
- EPRS: Key Challenges Worldwide
- EPRS: Global Approaches to These Challenges
- Best Practice Comparison

James Rowley
Hydratight
Hydratight has over 20 years experience supplying engineered Mechanical Connectors:

- +2800 DNV Type Approved (permanent repair) Connectors supplied to date
- 100% leak-free in-service record
- Shallow and deepwater repairs
- Provides EPRS Clubs and products for clients EPRS systems.

Connector Subsea Solution is a diverless inspection, repair and maintenance specialist:

- Pipe lifting and handling frames
- Pipe cutting, coating removal, end preparation tools
- Flexible Inspection and Cleaning tools
- Shallow and deepwater repairs
- Provides products for clients EPRS systems.

Formal Collaborative Agreement offers a complete combined system for SURF IRM
Subsea Pipeline Repair

<table>
<thead>
<tr>
<th>Causes</th>
<th>Options</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion</td>
<td>Containment</td>
<td>Clamp</td>
</tr>
<tr>
<td>Erosion / Abrasion</td>
<td>Mechanical Connectors</td>
<td>Sleeve Type</td>
</tr>
<tr>
<td>CP Failure</td>
<td>Replacement</td>
<td>Local Repair</td>
</tr>
<tr>
<td>Dropped objects</td>
<td>Hyperbaric Welding</td>
<td>New Pipe</td>
</tr>
<tr>
<td>Fishing activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seabed structure</td>
<td>Surface Welding</td>
<td></td>
</tr>
<tr>
<td>Installation issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor drag / drop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal blockage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation Issues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcomes
- Holes
- Cracks
- Gouges
- Buckles
- Dents
- Severed Pipe

Typical reference: DNV-RP-F116 – Integrity Management of Submarine Pipeline Systems
EPRS is simply the management of risk through contingency planning. Every Operator must decide their own Asset Risk Rating and prepare accordingly.
Cost vs. Response

- EPRS might include:
 - Long Lead time Products
 - All ancillary products (enable installation)
 - Repair spools and flanges (MAFS)
 - Maintenance Contract
 - Service agreements with vessel/ diver/ installation contractor
 - “Dry Run” practices

Every addition to the EPRS reduces the potential risk and **Operational Expenditure** should damage occur, but increases the **Capital Expenditure** of the system.
Maintenance & Refurbishment

- Owning Repair Equipment is not enough to mitigate risk should damage occur

- EPRS must be Fit-For-Purpose
 - Ready to mobilize
 - Documents and Procedures in place
 - Supply route (logistics) tested and proven
 - Identifiable

- Storage and Maintenance are critical
 - Seal conditions
 - Availability
 - Location
 - Fit-For-Purpose
Operator Best Practice

- Conduct their own risk assessment
 - Different Political/Geographical Considerations
 - Different resource availability
 - Field specific production rates, asset age and condition

- Identify their own technical requirements
 - Industrial design code acceptance & legislation
 - Supply chain approval
 - Installation capability
 - EPRS mobilization times and locations

- Determine their own commercial budgets
 - Industrial design code acceptance
 - Supply chain approval
 - Installation capability

- Include the ongoing storage and maintenance of their EPRS

Support obtained from third party engineering firms or direct from the vendors and suppliers
Future Considerations With EPRS

- Risers
- Pipe-in-Pipe
- Clad Pipe
- Exotic material (duplex, >X70 etc)
- Deepwater/ Remote Installation
- High Pressure
- High Temperature
- Well Fluid Composition (CO$_2$, H$_2$S)
Key EPRS Options

- “Required Response Time”:
 - Fully built Items (choice of storage locations)
 - Part built Items (stored at OEM only)
 - Materials only (stored at OEM only)

- “Location of Storage/ maintenance options”:
 - Ad Hoc (OEM contacted when required)
 - Framework (OEM fulfils contract to ensure all items remain functional)

- Maintenance restrictions:
 - Workshop/ office space
 - QHHSE Management
 - Support (technicians, lifting gear, hydraulics, test bay, machinery
Global EPRS Leaders

- **Statoil PRS**
 - Established for over 15 years ($300m investment)
 - All pipelines to be repaired remotely – 7 successful installations to date
 - Bespoke PRS team responsible for Installation systems
 - Framework agreement agreement with Hydratight to provide ALL mechanical connectors

- **Petrobras CRD**
 - Established for 10 years
 - Includes diver assisted and diverless repairs
 - Bespoke maintenance and refurb. Team

- **Gulf of Mexico RUPE/DWRUPE**
 - Established for 10 years
 - Includes diver assisted and diverless repairs
 - Managed by Stress Engineering
Case Study – EPRS Club UK

<table>
<thead>
<tr>
<th>Category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size Range</td>
<td>8” – 16” #300lb</td>
<td>16” – 24” #600lb</td>
<td>24” – 28” #900lb</td>
<td>30 – 34” #900lb</td>
<td>36” (complete)</td>
</tr>
<tr>
<td>Delivery Commitment</td>
<td>4-6 weeks</td>
<td>6 – 8 weeks</td>
<td>8-10 weeks</td>
<td>10-12 weeks</td>
<td>10 days</td>
</tr>
</tbody>
</table>

- Low CAPEX cost ‘membership’ fee
- Low annual OPEX ‘subscription’ rate
- Tailored contingency solutions
- Guaranteed access to high quality pipeline repair equipment
- Short lead times for supply of connectors – within mobilisation times of owners
Case Study – Statoil (Norway)

- Deepwater Contingency 1000mwd
- Diverless (Remote) Connectors - 3in, 10in, 12in, 16in, 20in, 28in and 30in coverage
- Fully complete, utilising shared components across all sizes – offering considerable savings
- Maximum 18 day call off for EXW mobilization
- Maintenance and storage contract including personnel competencies for installation
- Frame agreement for future manufacturing
Case Study – ONGC (India)

- Complete connectors (8” – 36”) bought as contingency
- MAF terminations for maximum flexibility
- Bespoke storage requirements
 - Pressurized container
 - Nitrogen filled
 - c/w tensioners supplied and tested as single “system”
- Ad Hoc Maintenance
Case Study – Chevron/ Inpex (Australia)

- EPRS contract direct with Subsea7
- Chevron Gorgon and Wheatstone EPRS (4off 34” and 4off 44”)
- Inpex Ichthys EPRS (2off 42”)
- Up to 1350mwd
- Substantial lifting equipment required
- Ground conditions soft and on gradient
- Storage and maintenance in-country
Best Practice Comparison

• Shallow and deepwater are considered as only one scope, with the benefits of high experience exchange, short operational mobilization time, cost reduction; among others advantages.
• Actual and new pipeline scopes to be covered in the ongoing EPRS through development and delivery clauses for new demands.
• New technologies and developments also covered through technology development and upgrade clauses.
• Worldwide deployment through specific logistics.
• Frame agreement for future manufacturing.