
MCE Deepwater Development 2017

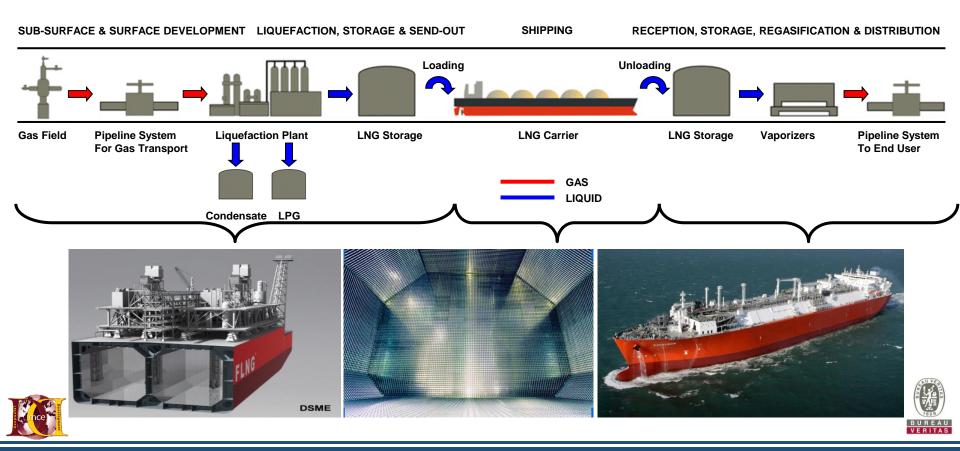
Classification of the Largest Ever Floating Storage Regasification Unit

Philippe CAMBOS Bureau Veritas

NH GRAND HOTEL KRASNAPOLSKY • AMSTERDAM • 3-5 APRIL 2017

AGENDA

- 1. Introduction
- 2. The project
- 3. Liquid motion analysis
- 4. Structural analysis
- 5. Fatigue analysis
- 6. Conclusion



Production, Storage, Transport & Regasification of LNG

- LNG Production & Storage ⇒ FLNG LNG-FSPO
- LNG Transportation ⇒ LNG Carriers (ships)
- Storage et Regasification of LNG ⇒ FSRU

The project

<u>Context</u>

- New terminal for South America,
- Moored along a jetty.

Dimensions	(m)
LOA	345.0
LBP	333.0
Breadth MLD	55.0
Depth	27.0
Draft Design	12.0
Draft Scant.	13.7

• <u>Unit</u>

- LNG-FSRU of 263 000 m³ Capacity,
- Storage and regas LNG on board.

<u>Tanks</u>

- Unit with 5 cargo tanks (QMAX size)
- Built with NO96 Cargo containment system.

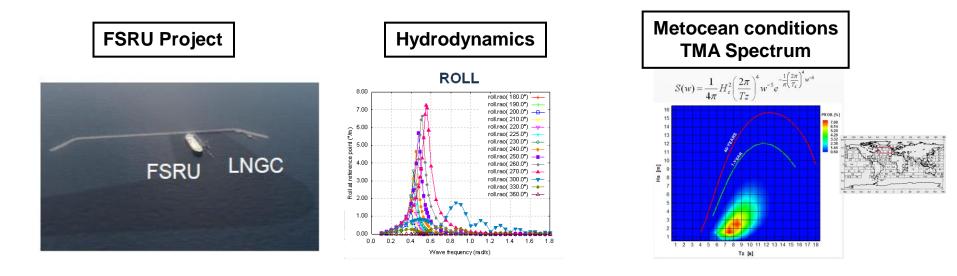
N327 LNGC FSR	RU	Tank n° 1	Aft and fore cofferdam	Standard Tanks	Standard Tanka
Length	[m]	32.52	30	45.12	20
Breadth Fore \ Aft	[m]	30.42 \ 48.48	15	48.82	15 19
Height	[m]	28.57	5	28.57	10
Upper Chamfer	[m]	9.76	0 5 10 25 20 25 20	9.76	5
Lower Chamfer	[m]	4.75	Broadth (m) —Fore Coferdiam — Aft, Cefferdam	4.75	0 5 39 15 20 25 Breath(m)

Production, Storage, Transport & Regasification of LNG

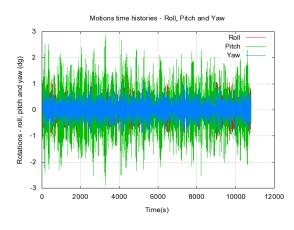
Largest FSRU in service:

- LNG-FSRU of 173 000 m3 Capacity,
- 4 cargo tanks
- BV Class.

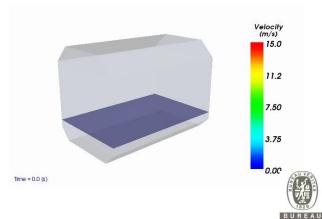
• Largest FSRU under building:


- LNG-FSRU of 263 000 m³ Capacity,
- 5 cargo tanks
- BV Class notations: I, &HULL, &MACH,

Liquefied gas carrier – RV, Unrestricted navigation, ☆VeriSTAR-HULL CM FAT (40 years), INWATERSURVEY, ☆POSA-JETTY, ☆AUT-PORT, ☆ALM/ALP

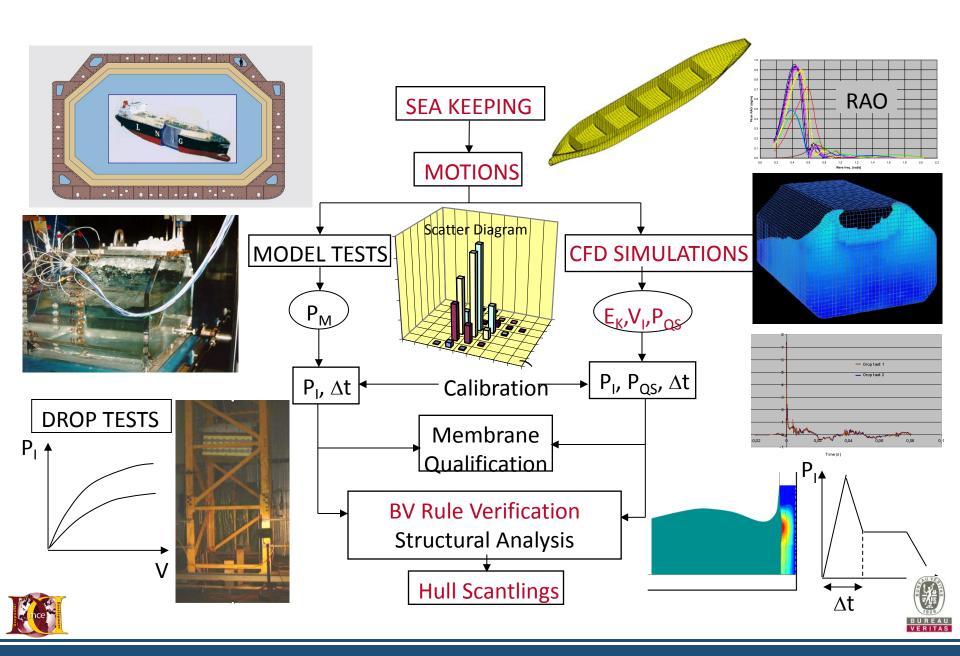


Hydrodynamic analysis - Méthodology



Sloshing Simulations & Sloshing Model Tests

Spectral Calculations ⇒ Irregular Excitations



VERITAS

Liquid Motion analysis methodology

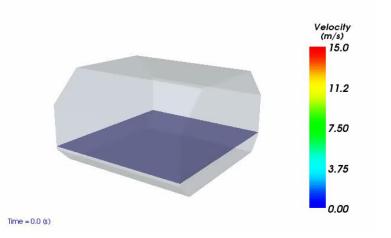
Assumption of Liquid motion analysis

Hydrodynamic mesh

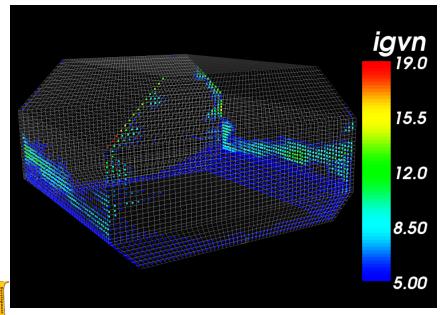
► Tanks are modeled for seakeeping/sloshing coupling.

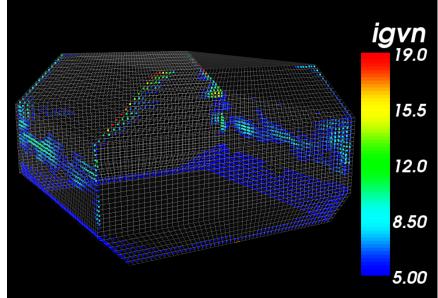
Navigation mode

- ► North Atlantic 40-year scatter diagram (as recommended by IACS Rec.34)
- Cases for each of the filling levels {10%H; 70%h & 95%H} for standard tank & tank n°1
- 32 (cases) * 3 (filling) * 2 (std. tk/tk N1) = 192 cases (3 hours irregular motions)

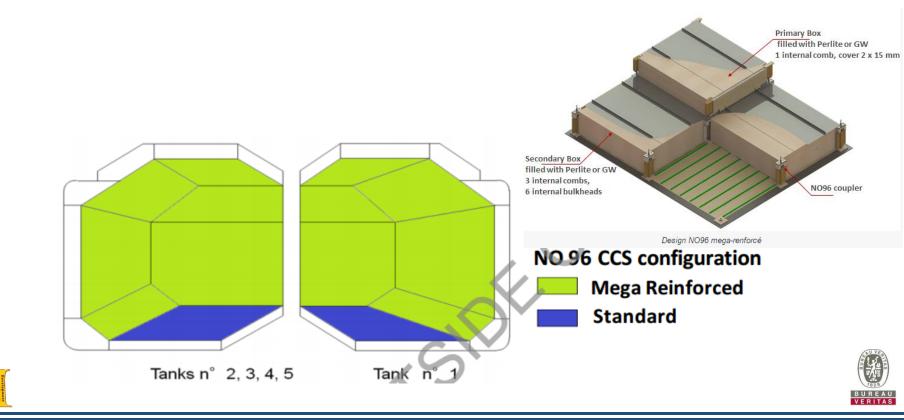

FSRU mode

- Scatter diagram is provided (30 years of hindcast data),
- Extreme cases (100 year RP) are investigated,
- Filling levels investigated {15%H, 20%H, 25%H, 30%H, 40%H & 50%H}
- ► Water Depth = 15m ⇒ Shallow water depth, V=0


	18.5	17.5	16.5	15.5	14.5	13.5	12.6	11.5	10.6	9.5	8.5	7.6	6.5	6.6	4.6	3.5	2.5	1.5	Hs \ Tz
3565	0	0	0	0	0	0	0	1	7	43	218	741	1388	1012	158	2	0	0	0.5
26396	0	0	0	0	1	6	38	188	822	2777	6510	9044	5816	1152	34	0	0	0	1.5
27830	0	0	0	1	7	39	187	753	2415	5681	8707	7282	2523	231	3	0	0	0	2.5
22357	0	0	1	- 4	21	99	395	1302	3317	5960	6633	3771	813	41	0	0	0	0	3.6
15533	0	0	2	8	37	153	532	1490	3139	4509	3844	1583	229	7	0	0	0	0	4.5
9734	0	0	2	11	48	178	542	1316	2347	2773	1873	583	60	1	0	0	0	0	5.5
5617	0	1	3	13	49	105	452	965	1483	1470	807	195	15	0	0	0	0	0	6.5
3023	0	1	3	12	43	131	323	614	822	695	316	61	- 4	0	0	0	0	0	7.5
1529	0	1	3	10	32	91	204	347	410	299	114	18	1	0	0	0	0	0	8.5
732	0	0	2	7	22	56	116	178	187	119	39	5	0	0	0	0	0	0	9.5
333	0	0	1	5	13	32	60	84	79	44	13	1	0	0	0	0	0	0	10.5
144	0	0	1	3	7	17	29	37	31	18	4	0	0	0	0	0	0	0	11.5
60	0	0	D	2	- 4	8	13	15	12	5	1	0	0	0	0	0	0	0	12.6
24	0	0	0	1	2	4	5	6	4	2	0	0	0	0	0	0	0	0	13.5
9	0	0	D	0	1	2	2	2	1	0	0	0	0	0	0	0	0	0	14.5
3	0	0	0	0	0	1	1	1	0	0	0	0	Ó	0	0	0	0	0	15.5
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16.5
116880	1	4	18	77	289	978	2897	7299	15078	24393	29078	23285	10848	2444	193	2	0	0	



Liquid motion analysis - Results



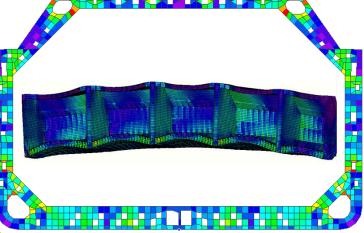
Conclusion of liquid motion analysis - BV approval of CCS

First, BV has no objection regarding the conclusion of the project. The conclusion is that the Cargo Containment System (NO96 Mega Reinforced) is suitable to sustain the sloshing loads in the different cargo tanks when the ship is operated for 40 years of navigation in North Atlantic conditions within the standard filling limits (below 10%H and above 70%H) and without any filling limitation in FSRU mode for regas conditions on the site.

Résistance – Modèle 2D

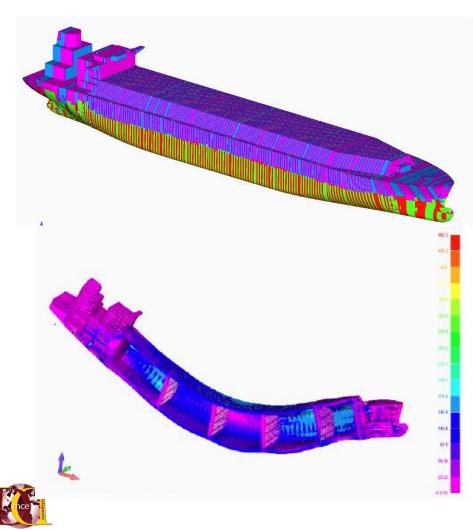
Several transverse sections analysed along the ship length for :

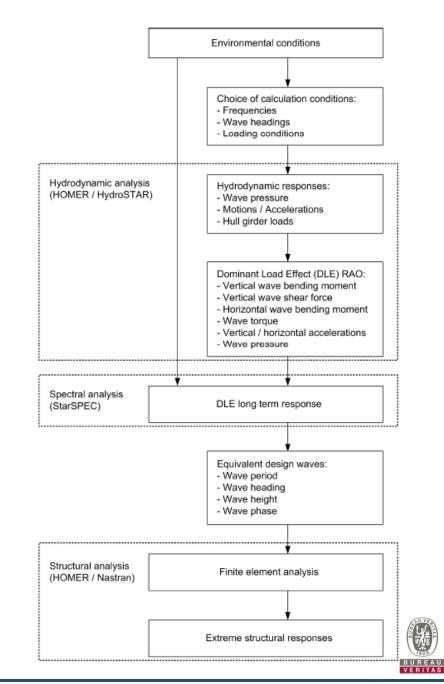
- Longitudinal strength assessment,
- Longitudinal ordinay stiffeners,
- Plating thickness between stiffeners.



Strength analysis – Modèle 3D

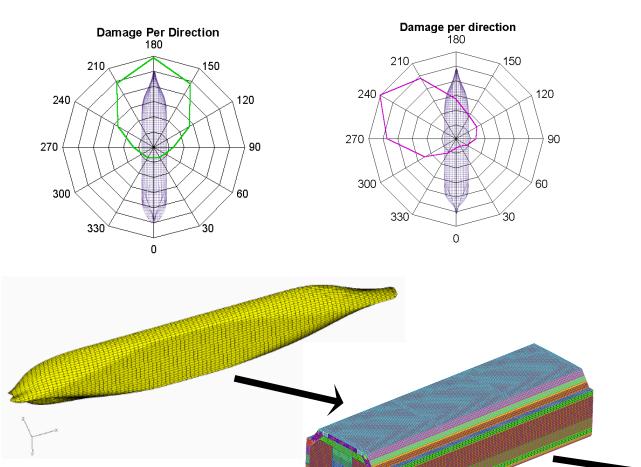
3 structural models extended over 3 cargo tanks:

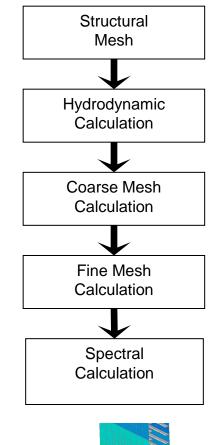

- Typical tanks at Midship,
- Fore tank and trunck deck end,
- Aft tank and connection with accomodation.


Assessment of the primary structural members.

Strength – Full ship model

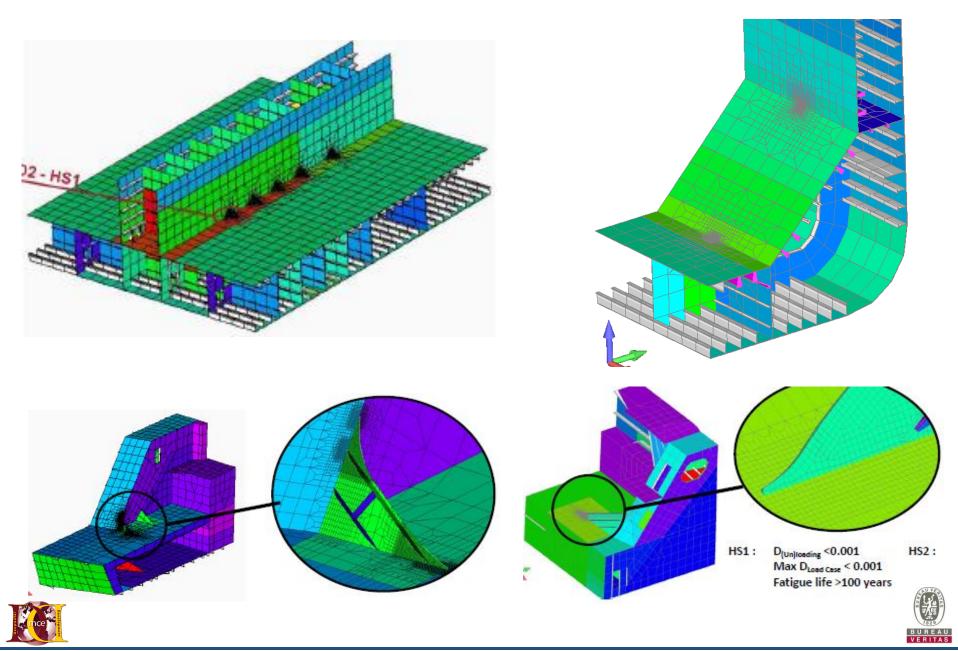
- VeriSTAR Hull FLM (FLM: Full Length Model)
- Méthodology of the equivalent design wave.

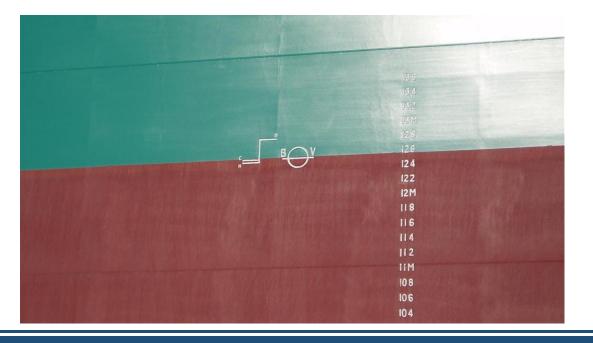




Spectral Fatigue analysis for Offshore units

Typical Spectral Fatigue Analysis


(more than 1000 load cases)



Fatigue strength assessment – Analysed Hot spots

Conclusion

- Classification of the largest FSRU,
- Several independant analysis were carried out,
- Use of most advanced methodologies,
- Validation of reinforcements for partial fillings,
- Assessment of the Cargo containment system,
- Assessment of the structure strength under extreme loads,
- Fatigue assessment.

Thank you for your attention!

Move Forward with Confidence

NH GRAND HOTEL KRASNAPOLSKY • AMSTERDAM • 3-5 APRIL 2017