Deepwater Flexible Pipes for Sour Applications

Adam Rubin National Oilwell Varco



MILAN MARRIOTT HOTEL • MILAN, ITALY • 9-11 APRIL 2018

## Outline

- Sour Cracking of Steel
- Annulus Environment of Flexible Pipes
- Laboratory Test
- Refined Annulus Prediction Model
- Full Scale Validation
- Application



# Sour Cracking and H<sub>2</sub>S in Flexible Pipes

 Steel in contact with H<sub>2</sub>S risks fractures and internal cracking





- 1000 hu
- Observations of no  $H_2S$  in venting gas and no sulfide scale in dissected pipes
- No observations of sour cracking of sweet service pipes in souring wells
- Full scale sour test with no measurable H<sub>2</sub>S

## **The Annular Space**

- Confined area, a lot of steel 100.000 cm<sup>2</sup>/m
- Low V/S ratio <0.1 ml/cm<sup>2</sup>
- A potential corrosive environment



#### Traditional Mass Balance: In = Out (OS) + Out (VV)



## **Bore Environment <-> Predicted Annulus Envionment <-> Steel**





# **Consumption of H<sub>2</sub>S**

- $H_2S$  enters by permeation through the liner:
  - $H_2S + Fe \rightarrow FeS + H_2$
- If supply of H₂S is slow enough
  → Concentration decreased/depletion
  → Tendency to HIC+SSC lowered
- Flow rate into annulus:

 $mH_2S/min/cm^2$  steel surface





10-3

10-4

#### **Laboratory Tests**

- Packed cell with armour wire to simulate annulus
- H<sub>2</sub>S in CO<sub>2</sub> test gas
- Gas flow: 10<sup>-3</sup>, 10<sup>-4</sup>, 10<sup>-5</sup>, 5x10<sup>-6</sup>, 10<sup>-6</sup> mIH<sub>2</sub>S/min/cm<sup>2</sup>
- Test time: 800-1700 hours
- Monitoring: H<sub>2</sub>S, pH, O<sub>2</sub> -continuously
- Test results:
  - H<sub>2</sub>S concentration
  - Wire cracking examination





#### MCE Deepwater Development 2018

#### **Results**





## **Refined "Flow Sour" Annulus Prediction Model**



#### New Mass Balance: In = Consumed +Out (OS) + Out (VV)



# **Full Scale Validation – Test Pipe**

- Standard Sweet 6" deep water pipe:
  - Armour wire: SMYS 1350 MPa
- Bore:
  - $_{\odot}$  Water, saturated with gas: 10%  $\rm H_{2}S$  in CO  $_{2}$
  - ∘ Pressure: 50 bar  $\rightarrow$  5 bar H<sub>2</sub>S
- Tension:
  - $_{\circ}$  400 tons → 85% yield of tensile armour
- Annulus:
  - Venting pressure: 2barg
  - Calculated H<sub>2</sub>S flux: 10<sup>-6</sup> ml/min/cm<sup>2</sup> steel surface
  - Standard calculated annulus H<sub>2</sub>S partial pressure: 177 mbar





## Full Scale Validation – Test Setup

- Test time: 1 year
- Continuously monitoring
- Annulus gas sampling every month
- Annulus solution sampling every month







# **Full Scale Validation - Rusults**

- Sampling annulus solutions:
  - pH: Stable along the test 6.3 -6.7
  - H<sub>2</sub>S: ~ 0.1 mbar
- Sampling annulus gas:
  - 。60-80 vol% H<sub>2</sub>
  - No H<sub>2</sub>S detected



- No loss of pipe integrity
- Pipe Dissection:
  - No sour cracking More than 150 m UT scanned for internal cracking

#### Model Validated

High strength wire showed resistant to a traditionally calculated annulus of 177 mbar!



# **Application**

- "Flow Sour" Annulus Prediction model
- Revied by IVA and incorporated in Type Approval
- Ensures complience with standards
  - H<sub>2</sub>S level is still used to select steel armour materials with adequate sour resistance
  - Steel qualification and quality control tested based on ISO 15156 / NACE TM0177 / NACE TM0316
  - Fully in compliance with API 17 J section 6.2.4.2 "SSC and HIC testing"

|                         |                  |                  | /                                  |         |  |
|-------------------------|------------------|------------------|------------------------------------|---------|--|
|                         |                  |                  |                                    |         |  |
|                         |                  |                  |                                    |         |  |
|                         |                  | Ś                |                                    |         |  |
|                         |                  | $\sim$           |                                    |         |  |
|                         |                  |                  |                                    |         |  |
|                         |                  | J.               |                                    |         |  |
|                         |                  |                  | <u>(</u> )                         |         |  |
|                         |                  |                  | $\sim$                             |         |  |
|                         |                  |                  |                                    |         |  |
|                         |                  |                  |                                    |         |  |
|                         | /                |                  |                                    |         |  |
| Design Methodology fo   | r Flexible Pines | Tel -            | NOV Fle                            | exibles |  |
| P. CASTAGNA             | Technical Report | E&P1197          | Sour Annulus Predi<br>H-R-2015 001 | iction  |  |
| P. CASTAGNA / A. MASSON | F. MIGEON        | 02               | 23-001 (R14                        | (56)    |  |
| P. CASTAGNA / A. MASSON | F. MIGEON        | 01               | 51-Aug-2015                        |         |  |
| Written by              | F. MIGEON        | 00               | 12-Aug-2015                        |         |  |
|                         | Checked by       | Rev.             | Date                               | ALU VE  |  |
|                         |                  |                  | Sup                                | E Stall |  |
|                         |                  |                  |                                    | 1418    |  |
| Bureau Veritas – Imm    | euble "1920" an  |                  |                                    | BUREAU  |  |
|                         | 1628", 67/71 Bou | levard du Châtea | u - 92200 Neuilly Sur Sain         | VERITAS |  |
|                         |                  |                  | , -u seine,                        | France  |  |



# **Applications – Optimised Designs**

- Enabler for free hanging 6"production riser
- 345 bar pressure
- 200 ppm H2S
- 2.500 MWD

- 10" Production Riser
- 345 bar pressure
- 6.700 ppm H2S
- 750 MWD



|                      | Traditional<br>Model | Flow Sour<br>Model | Change |
|----------------------|----------------------|--------------------|--------|
| OD [mm]              | 432                  | 414                | -18 mm |
| Weight in air [kg/m] | 287                  | 214                | -25%   |
| Weight in sea [kg/m] | 137                  | 77                 | -44%   |



## Questions



Adam Rubin R&D Director | Material Technology adam.rubin@nov.com

