# Eni MaREnergy: Marine Renewable Energy for Subsea Robotic Residential System

en

progetti

#### Eliana De Marchi

Co-Authors: Elisabetta Boi, Alessandro Malkowski, Andrea Alessi, Alessandro Riva, Fabio Zanon, Carlo Cesari, Bruno Cresci, Giuseppe Rana, Nina Di Natale

MCEDD Conference, Milano, April 9-11th

#### **MARINE RENEWABLE ENERGY – OVERVIEW & ROADMAP**

- Within Eni Low Carbon emission strategy, an R&D Project MaRenergy has been set up to:
  - harvesting of marine renewable energy
  - integration of such technologies into offshore fields
- Opportunities & benefits
  - Limiting CO2 in offshore development
  - Increase project feasibility in harsh environment
  - Potential existing asset valorisation
  - Exploitation of synergies

## MaREnergy RoadMap:







#### **MARENERGY – Marine Energy Technologies**

- Tidal Energy Conversion (TEC)
  - Sea current
  - Tidal Stream & Tidal Barriers
- Wave Energy Conversion (WEC)

• Energy from sea waves









- Ocean Thermal Energy Conversion (OTEC)
  - Thermal gradient due to water depth
- Salinity Gradient
  - Pressure Retarded Osmosis (PRO)
  - Reverse Electro-Dialysis (RDE)







#### MARENERGY – WORLDWIDE SEA ENERGY MAPS





- *Eni worldwide presence including site in exploitable areas*
- Meteocean data Available at Enisite useful for local energy assessment
- Adriatic Sea as an "open sea validating laboratory" for sub-scale replica of most energetic sea with complete dynamic range replicated—suitable location for Pilot project

eniprogetti

#### **MARENERGY - MARINE ENERGY CONVERSION TECHNOLOGIES**



| Marine Energy Devices               |                             |  |  |
|-------------------------------------|-----------------------------|--|--|
| Wave Energy Converters WEC          | Tidal Energy Converters TEC |  |  |
| Attenuator                          | Horizontal Axis Turbine     |  |  |
| Point Absorber                      | Vertical Axis Turbine       |  |  |
| Oscillating Wave Surge<br>Converter | Oscillating Hydrofoil       |  |  |
| Oscillating Water Column            | Enclosed Tips (Ducted)      |  |  |
| Overtopping                         | Helical Screw               |  |  |
| Pressure Differential               | Tidal Kite                  |  |  |
| Bulge Wave                          | Other                       |  |  |
| Rotating Mass                       |                             |  |  |
| Other                               |                             |  |  |

| TRL 9 | Full commercial application, technology available for consumers                               |              |
|-------|-----------------------------------------------------------------------------------------------|--------------|
| TRL 8 | First of a kind commercial system. Manufacturing issues solved                                |              |
| TRL 7 | <u>Demonstration system</u> operating in operational environment at pre-<br>commercial scale. | <b>T</b> 1-1 |
| TRL 6 | <u>Prototype system</u> tested in intended environment close to expected performance          |              |
| TRL 5 | Large scale prototype tested in intended environment                                          | Wave         |
| TRL 4 | Small scale prototype built and tested in a laboratory environment.                           |              |
| TRL 3 | Applied research. First laboratory tests completed; proof of concept                          |              |
| TRL 2 | Technology formulation. Concept and application have been formulated                          |              |
| TRL1  | Basic research. Principles postulated and observed but no experimental proof available.       |              |

 Limited maturity technologies allows for business needs customization and exploitation of synergies for risk and cost reduction

#### eniprogetti

## **MARENERGY - TECHNOLOGY SCREENING**



- Ad-hoc screening methodology developed for technology selection based on business case & risk reduction
- Assessment criteria based on API17N risk categories
  - Maturity
  - Reliability
  - Configuration
  - Operative envelope
  - Risk organization
  - 150+ technologies screened ranking list for each marine technologies including (WEC, TEC, OTEC and Float. Wind)











| Power Range          | Business Case                                              |
|----------------------|------------------------------------------------------------|
| Up to 15 kW          | <b>CleanSea</b><br>Subsea field<br>Unmanned monopole       |
| From 15 kW to 500 kW | Unmanned satellite platforms<br>Partially manned platforms |
| Above 500 kW         | Pre-process & compression                                  |

## **MARENERGY – PILOT SYSTEM TECHNOLOGY SHORTLIST**



#### Rotating mass

- Passive: flywheel
- Active: gyroscope



- No moving parts exposed: PTO is fully within the hull
- Possible Drawback: mooring line





- Point Absorber
  - Submerged
  - Floating/SPAR like



- Exploiting relative motion of a moving part and a fixed one
- Can provide both electric and hydraulic power





WEC (Point Absorber): Carnegie, OPT

### **OPT PB3 POWERBUOY™ - PILOT SYSTEM**

- Technology type: Point Absorber
- High maturity: 1:1 scale already deployed and field proven
- Peak power: 3 kW suitable for Adriatic Sea
- Water depth: 30 up to 1000+ m
- Simplified management for installation/mooring/operation





Eni OPT PB3 construction in Monroe Township NJ USA









## **OPT PB3 POWERBUOY™ - PILOT PLANT ARCHITECTURE**



- OPT PB3 pilot site could be located close by an Eni platform in the Adriatic Sea
- OPT System shall be connected with a power & telecom. cable to a subsea test setup (AUV docking station mock-up) in order to demonstrate full compliance with Cleansea residential system requirements
- Sea trials will validate OPT performances and S/S capabilities in particular:
  - OPT PTO performances
  - OPT Energy Storage and energy transfer
  - Real-time communications for fully autonomous and unmanned monitoring and data transmission
  - Monitoring, control and data acquisition of low power subsea
    equipment















Acknowledgements: OPT - Ocean Power Technologies Inc., Cleansea Team

