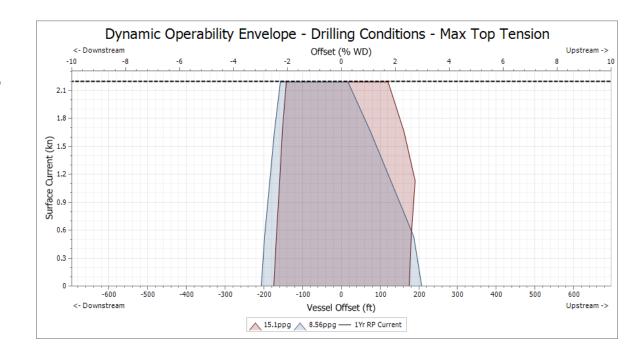
Integrated Approach to Drilling Operations Planning Delivers a Step-Change in Efficiency for Deepwater and Harsh Environment

Paul Bohan
Drilling Software Product Manager

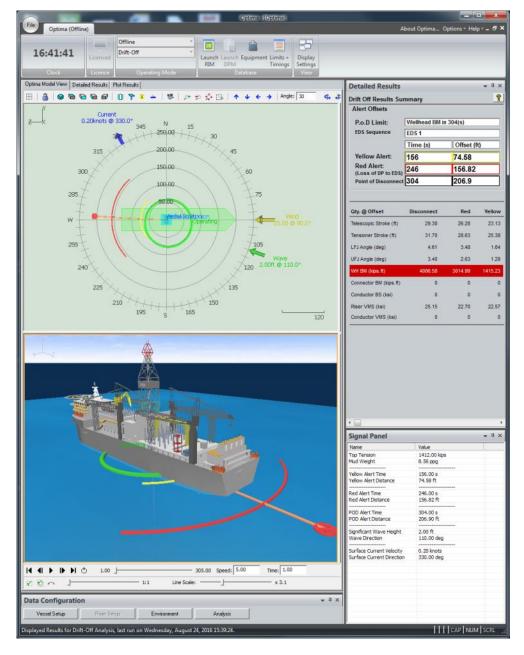
wood.

Introduction


- Deepwater / harsh environment drilling
- Commercial environment
- Integrity assurance
- Marine riser operations significant driver of weatherrelated downtime
- Requirement to optimize operations

The Traditional Approach: Fixed WSOG

- Well Specific Operating Guidelines
- Developed prior to drilling program
- Define limits for vessel and riser operations
- Verify feasibility
- Use statistical metocean inputs
- A necessary step, but ...
- ... may be too restrictive for deepwater / harsh environment
- Wait on Weather ⇒ Increased Costs



There is a better approach!

Forecast Analysis: "Live WSOG"

- Operational phase
- Combine metocean forecasts with riser simulation
- Confirm feasibility of planned operations
- Eliminates conservatism of fixed WSOG
- Continuous process 24/7
- 12-hr, 24-hr, 2-day, 3-day, 1-week look ahead
- Informs critical decision-making
- "What if" scenario planning

Forecast Analysis: Conductor Deployment

36" Conductor hang at Slips

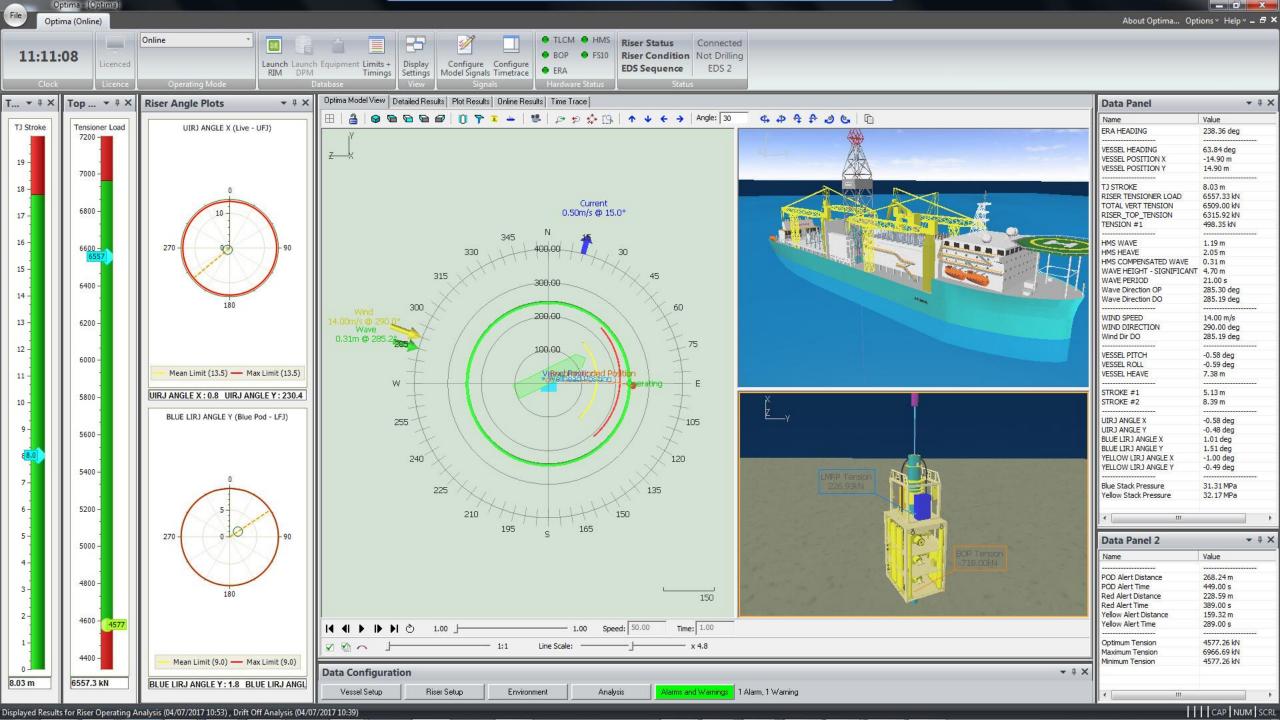
Date (from)	ected Duration to Complete (h)	Time to Start (ID)	17/3/16 9:00	17/3/16 12:00	17/3/16 15:00	17/3/16 18:00	17/3/16 21:00	18/3/16 0:00	18/3/16 3:00	18/3/16 6:00	18/3/16 9:00	18/3/16 12:00	18/3/16 15:00	18/3/16 18:00	18/3/16 21:00	19/3/16 0:00	19/3/16 3:00
Hs (m)	Expec	Expected	1.7	1.7	1.7	1.7	1.8	2.0	2.1	2.2	2.1	1.9	1.8	2.0	2.5	3.1	3.5
Tp (s)			6	7	7	7	6	6	5	5	5	6	7	7	6	6	6
Current (m/s) from Full Current Profile Matrix.		ш															
P/U 36" CP shoe and pass throught rotatry table	3	0															
P/U & M/U 36" CP and RIW to 48m	3	3															
P/U & M/U 36" CP and RIW to 90m	3	6															
Rig down DP elevators, rig up slings and shackles, P/U & M/U LPWHH	3	9															
Land on padeyes, rig up DP elevators, P/U CP, cut and grind pad eyes, install deep																	
swallow bucket, set LPWHH in RT	4	12															
Rig up 5" DP running (change inserts of elevators), run 5" cement stinger	2	16															
M/U LPWHHRT, P/U string, remove support bucket	2	18															
Pass LPWHH assy thrgh Rotary Table, Lock Mudmat to LPWHH, install 4x4" ball																	
valves, splash LPWWHH	5	20															
RIW to 500m on 6"5/8 34#	2	25															
RIW to 1000m	2	27															
RIW to 1500m	2	29															
RIW to 2000m	2	31															

Go Ahead

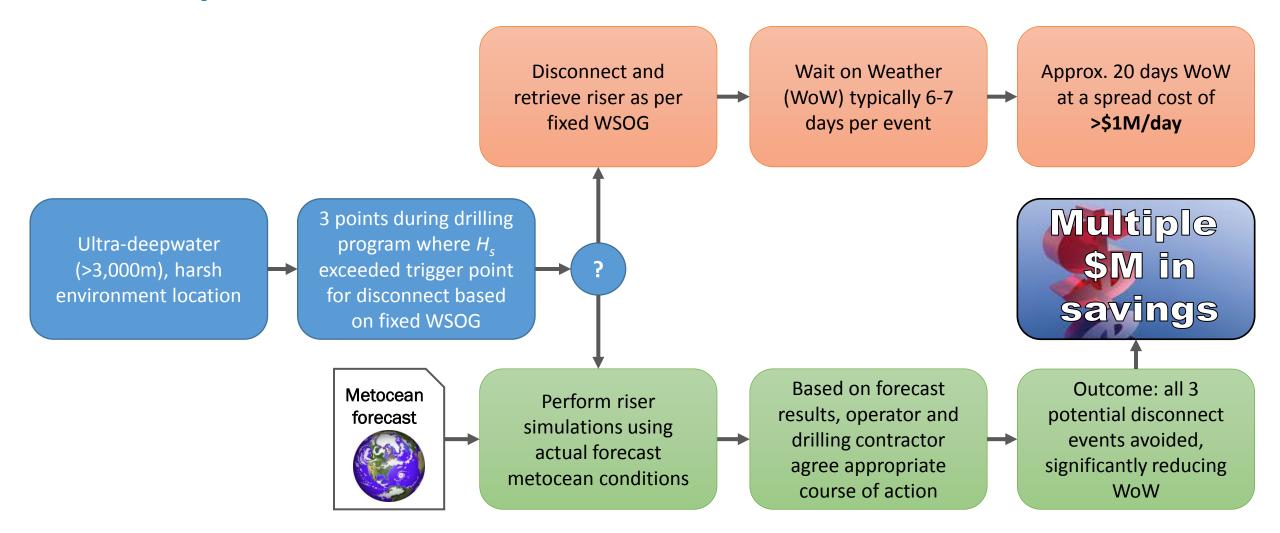
Go Ahead - after re analysis performed

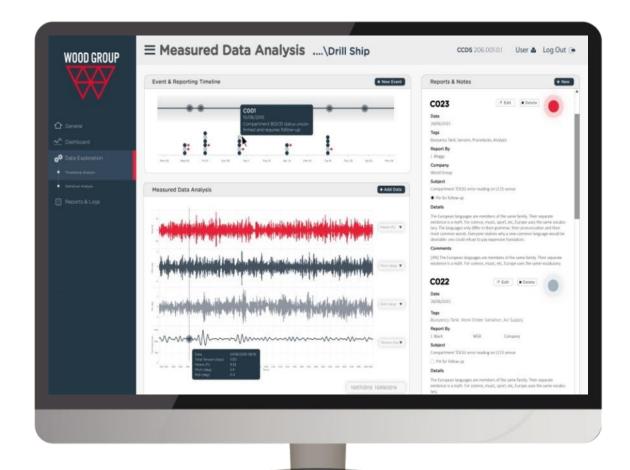
Go Ahead - but close to stress limit of the pipe

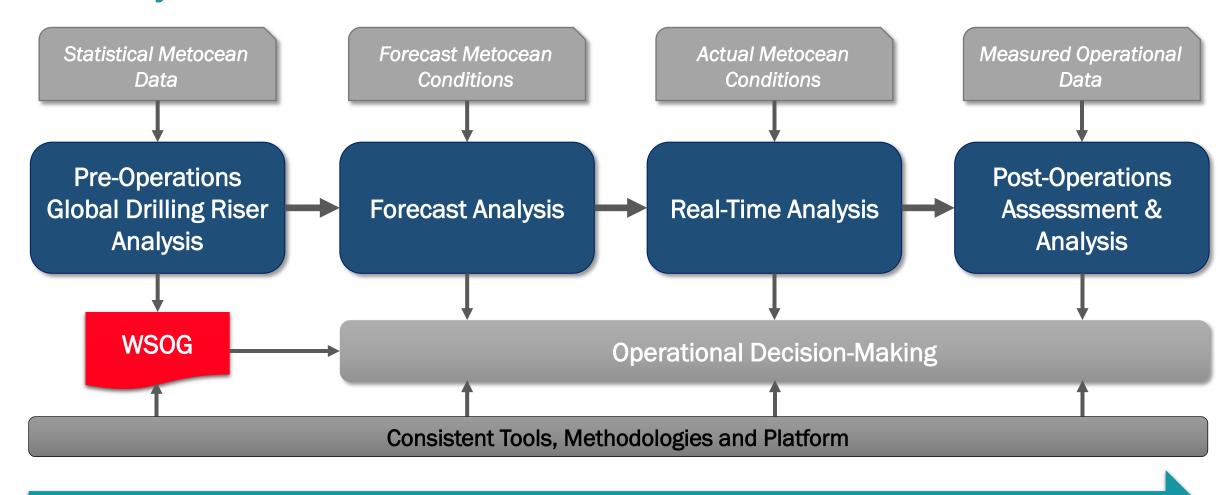
Limit Reached



Real-Time Monitoring and Analysis


- Real-time data acquisition from rig systems:
 - DP system
 - Marine riser tensioner
 - Upper & lower flex joint angles
 - Rig motions
 - Metocean data
- Input to live riser simulation to calculate:
 - Rig operating envelope
 - Optimum rig position & heading
 - Alert offsets for DP power-loss scenario
 - Min/max tension limits
- Continuity of riser model through all phases


Recent Experience


The Next Step: Post-Operations Analytics

- Wealth of measured operational data
- Post-operations analytics enables:
 - Review / assessment of operational strategy
 - Example: heading strategy
 - Feedback to operational procedures
 - Riser equipment usage tracking
 - Condition-based maintenance
 - Wellhead fatigue tracking
 - Incident investigation

Summary

Increasing Realism / Reducing Conservatism and Cost

Conclusions

- Legacy approach of using fixed WSOGs for marine riser operations potentially restrictive for deepwater / harsh environment
- Continuous planning using forecast metocean conditions offers potential for significant reduction in Wait on Weather and associated costs
- Real-time analysis permits optimisation of operations in progress
- The approach has been demonstrated on an ultra-deepwater harsh environment well and resulted in a significant reduction in Wait on Weather

Authors and Acknowledgements

- Paul Bohan
 - Drilling Software Product Manager, Wood, Ireland, Paul.Bohan@woodplc.com
- Donogh Lang
 - Director, Drilling, Wood, Ireland, Donogh.Lang@woodplc.com
- Germain Venero
 - Senior Engineer, Wood, Brazil, Germain.Venero@woodplc.com
- Victor Gomes
 - Project Coordinator, Wood, Brazil, <u>Victor.Gomes@woodplc.com</u>
- Hugues Corrignan
 - Director, Wood, Brazil, <u>Hugues.Corrignan@woodplc.com</u>
- John Pyke
 - Drilling Manager, Wood, Houston, US, <u>John.Pyke@woodplc.com</u>

Thank you!