Optimal Execution Strategy for EPCI projects with CRA pipelines in deepwater fields

Roel Swinkels Heerema Marine Contractors

MILAN MARRIOTT HOTEL • MILAN, ITALY • 9-11 APRIL 2018

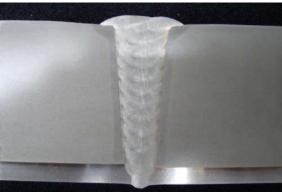
Context & agenda

- Increasing demand for CRA solutions for deepwater fields
- Deepwater & CRA add complexity & cost

 importance of optimization
- Is there an optimal execution strategy?
- Presentation contents
 - EPCI reflection based on recent project and study experience from HMC
 - Highlight ongoing development

MCE Deepwater Development 2018

Fabricating & installing CRA pipelines


- High procurement costs of linepipe
 - CRA clad (HRB) and lined (MLP) pipe generally more cost effective than solid CRA
 - Main focus on clad / lined solution
 - Limited number of suppliers, finite capacity & long lead times
- Difference in liner / linepipe mechanical properties
- Welding & inspection challenging
 - Challenge of overmatching
 - Low interpass temperature, more complex welding
 - Complex NDE, low acceptance criteria
 - > Higher risk of rejections

Weld Overlay

3

J-lay introduction

- Hex/Quad-joints loaded in tower & subsequently welded
 - Pipes can be held on friction or collars
 - Only option for pipelines of OD >18" or top tensions > 800mT
 - Sagbend loads on the pipe generally governing
- Single station tower cycle governs lay-rate
 - Combined welding & coating cycle time
 - Lay rate not significantly slowed down by anodes, structures, etc.
- Fully elastic lay conditions
- Multiple options for pipe logistics
 - Multi-jointing can be done onboard, onshore or combination

Reeling introduction

- Pipeline is stalked onshore & unspooled offshore
 - Pipes directly spooled on vessel or on exchangeable reels (Aegir)
 - High lay-rates offshore possible
 - Pipe is held on friction by tensioners
- Pipe and welds subjected to plastic deformation
 - Local buckling & straightener capacity checks
 - Possible for pipes typically up to 18"
 - General reeling engineering well understood
 - Specific technical considerations for CRA pipe
- Majority of the welding is done onshore
 - Time needed to qualify & stalk
 - Only welding offshore are the tie-in welds

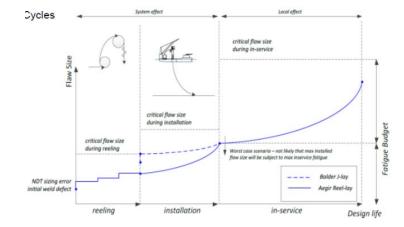
MCE Deepwater Development 2018

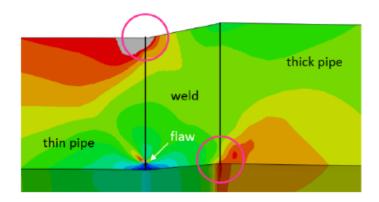
HMC assets & recent CRA installation experience

- Balder
 - 1050mT J-lay tower
 - 3000 & 4000mT cranes
 - Possibility of onboard multi-jointing
 - Vast deep-water pipe-lay track record
 - CRA riser installation on BP Angola Block31 PSVM

• Aegir

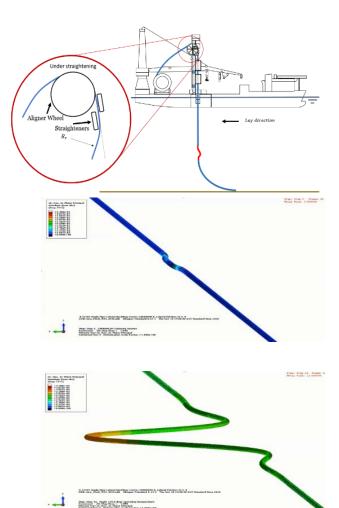
- 800mT reeling / 2000mT J-lay tower
- 2000mT subsea lowering capacity
- 4000mT crane
- Possibility of onboard multi-jointing
- Extensive CRA pipeline scope on Inpex Ichthys project
 - 7km of 12" Condensate Flowline (CRA Clad + MLPP coated) incl FLETs (4x)
 - 86km of 18" CRA Clad / Lined Production flowlines (MLPP Coated) with 18
 FLET / in-line structures weighing up to 210mT





Engineering considerations: installation

- Reeling imposes additional requirements
 - Reeling mechanical considerations
 - Minimum WT to avoid buckling
 - Increased plastic deformation due to stiffness mismatches
 - Pipe sizing not usually impacted for deep-water / HP-HT pipes
 - MLP wrinkling!
 - ECA is critical part of reeling engineering
 - Confirmation of feasibility / acceptance criteria
 - Potential schedule challenges: input from supplier, client and interaction with qualification effort
- Girth weld requirements
 - Overmatching on strength & corrosion resistance
 - Reeling of partially under matching welds



Engineering considerations: design

- Reeling gives option for RCM to manage expansion
 - Deepwater no issue: elastic recovery sufficient to have sufficient curvature
 - Simplified design process
 - Avoiding sleepers/buoyancy reduces cost
- MLP applicability in fatigue critical zones
 - Girth weld vs triple point
 - Fatigue performance potentially impacted by reeling
 - HRB / Clad option in case of insufficient performance
- Reelability of insulation coating
 - Criticality of tie-in field joint coating

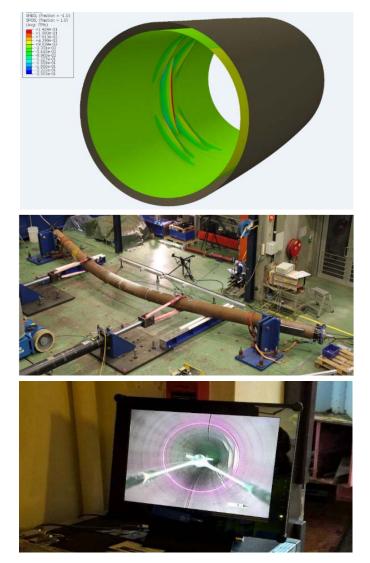
Procurement & onshore fabrication considerations

- Pipe lead time critical for project schedule
 - Reeling requires pipes longer before start of offshore campaign
 - Effect on overall project duration?
- Early involvement of supplier in design process necessary
 - Reeling imposes additional requirements on suppliers; minor cost impact as long as identified early
 - Input from supplier critical for engineering planning
- Increased WPQ requirements for R-Lay
 - Stress-strain curves, J-R curves
 - Specific Y/T ratio or weld overmatch determined by engineering

Installation considerations

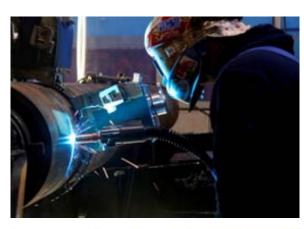
- Increased complexity of CRA welding
 - No root defects acceptable
 - Complexity NDE procedure
 - Need for purging (closure welds)
 - Managing geometrical tolerances
- Managing offshore schedule risk
 - Onshore fabrication mitigates (offshore) risk
 - Pipe buffer to partially mitigate risk with J-lay
 - Short weather window favors reeling
- Complexity of cut to length
- Short lines, structures, appurtenances decrease relative lay-rate advantage of reeling

EPCI comparison summary


- Project planning considerations
 - Reeling option puts more pressure on the up-front EPC activities, but derisks the offshore operations
 - Exchangeable reels allow for de-coupling spool base & Aegir
- Optimal flowline design differs for J-lay and R-lay
 - Pipe specification, CP design, buckling mitigation
 - For short lines with lots of structures reeling advantage is much less than technically feasible lay-rate
- Ability to mix different pipes in case of specific sections, considerations
- Reeling / multi-jointing onshore adds potential local content

HMC & PTL technical development (1)

- MLP DNV GL qualification program
 - Confirmation of reelability (limits)
 - Testing & engineering development program
 - (Pressurized) Reeling procedure development
 - Fatigue performance quantification: enabling MLP on risers / buckle zones
- Deepwater RCM
 - Extend application of RCM to deepwater application
 - In process of obtaining DNV endorsement
- FJC for reeling development program
 - Reduction of risk of cracking of thick (FJ)Coating
 - FJC material & geometries optimization with different vendors



HMC & PTL technical development (2)

- ECA development
 - Comprehensive in-house capability to perform fast level III ECAs
 - Modern ECA methods confirm full / partial under-matching is Ok if toughness, weld geometry & defect sizes are controlled
- Welding process development
 - Advanced in-house welding capabilities through Pipeline Technique affiliate
 - o Thick wall & overmatching welding technology development
- Direct deposition J-lay collar (PTL)
 - Supply chain optimization for J-lay by collars: lower costs, no additional WPQ
 - Full development program completed
- Full control of geometric tolerances
 - In-house pipe end-scanner & sorting-matching software

Conclusions (1)

- Advantages J-lay
 - o Only option for larger diameter, heaviest pipes
 - Spoolbase not necessary
 - Not necessarily slower, but more welding offshore
 - For complex flowlines J-lay with onshore multi-jointing can have advantages

• Reeling strongpoints

- De-risks (offshore) execution planning
- Exchangeable reels adds flexibility avoids need for local spoolbase
 - Decoupling spool-base and vessel (planning & location)
 - Option to limit spool base size / requirements (e.g. water depth)

Conclusions (2) & questions

- Design engineering to be optimized to maximize reeling advantages
 - RCM implementation, CP design optimization
 - Engineered weld selection & linepipe specification
 - Early supplier and contractor engagement
- Versatile installation assets and techniques improve cost effectiveness of (CRA) SURF
- Optimum?; no single answer & early involvement to reach full benefits

